Nektar++
Bidomain.cpp
Go to the documentation of this file.
1 ///////////////////////////////////////////////////////////////////////////////
2 //
3 // File Bidomain.cpp
4 //
5 // For more information, please see: http://www.nektar.info
6 //
7 // The MIT License
8 //
9 // Copyright (c) 2006 Division of Applied Mathematics, Brown University (USA),
10 // Department of Aeronautics, Imperial College London (UK), and Scientific
11 // Computing and Imaging Institute, University of Utah (USA).
12 //
13 // Permission is hereby granted, free of charge, to any person obtaining a
14 // copy of this software and associated documentation files (the "Software"),
15 // to deal in the Software without restriction, including without limitation
16 // the rights to use, copy, modify, merge, publish, distribute, sublicense,
17 // and/or sell copies of the Software, and to permit persons to whom the
18 // Software is furnished to do so, subject to the following conditions:
19 //
20 // The above copyright notice and this permission notice shall be included
21 // in all copies or substantial portions of the Software.
22 //
23 // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
24 // OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
25 // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
26 // THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
27 // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
28 // FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
29 // DEALINGS IN THE SOFTWARE.
30 //
31 // Description: Bidomain cardiac electrophysiology homogenised model.
32 //
33 ///////////////////////////////////////////////////////////////////////////////
34 
35 #include <iostream>
36 
39 
40 using namespace std;
41 
42 namespace Nektar
43 {
44  /**
45  * @class Bidomain
46  *
47  * Base model of cardiac electrophysiology of the form
48  * \f{align*}{
49  * \frac{\partial u}{\partial t} = \nabla^2 u + J_{ion},
50  * \f}
51  * where the reaction term, \f$J_{ion}\f$ is defined by a specific cell
52  * model.
53  *
54  * This implementation, at present, treats the reaction terms explicitly
55  * and the diffusive element implicitly.
56  */
57 
58  /**
59  * Registers the class with the Factory.
60  */
61  string Bidomain::className
63  "Bidomain",
64  Bidomain::create,
65  "Bidomain model of cardiac electrophysiology with 3D diffusion.");
66 
67 
68  /**
69  *
70  */
71  Bidomain::Bidomain(
74  : UnsteadySystem(pSession, pGraph)
75  {
76  }
77 
79  {
81  m_session->LoadParameter("Chi", m_chi);
82  m_session->LoadParameter("Cm", m_capMembrane);
83 
84  std::string vCellModel;
85  m_session->LoadSolverInfo("CELLMODEL", vCellModel, "");
86 
87  ASSERTL0(vCellModel != "", "Cell Model not specified.");
88 
90  m_intVariables.push_back(0);
91  m_intVariables.push_back(1);
92 
93  // Load variable coefficients
94  StdRegions::VarCoeffType varCoeffEnum[3] = {
98  };
99  std::string varName[3] = {
100  "AnisotropicConductivityX",
101  "AnisotropicConductivityY",
102  "AnisotropicConductivityZ"
103  };
104 
105 
106  if (m_session->DefinesFunction("IntracellularConductivity") && m_session->DefinesFunction("ExtracellularConductivity"))
107  {
108  for (int i = 0; i < m_spacedim; ++i)
109  {
110  int nq = m_fields[0]->GetNpoints();
111  Array<OneD,NekDouble> x0(nq);
112  Array<OneD,NekDouble> x1(nq);
113  Array<OneD,NekDouble> x2(nq);
114 
115  // get the coordinates
116  m_fields[0]->GetCoords(x0,x1,x2);
120  tmp1[i] = Array<OneD, NekDouble>(nq);
121  tmp2[i] = Array<OneD, NekDouble>(nq);
122  tmp3[i] = Array<OneD, NekDouble>(nq);
123 
125  = m_session->GetFunction("IntracellularConductivity", varName[i]);
127  = m_session->GetFunction("ExtracellularConductivity", varName[i]);
128  for(int j = 0; j < nq; j++)
129  {
130  tmp1[i][j] = ifunc1->Evaluate(x0[j],x1[j],x2[j],0.0);
131  tmp2[i][j] = ifunc2->Evaluate(x0[j],x1[j],x2[j],0.0);
132  }
133  Vmath::Vadd(nq, tmp1[i], 1, tmp2[i], 1, tmp3[i], 1);
134  m_vardiffi[varCoeffEnum[i]] = tmp1[i];
135  m_vardiffie[varCoeffEnum[i]] = tmp3[i];
136  }
137  }
138 
139 
140  if (m_session->DefinesParameter("StimulusDuration"))
141  {
142  ASSERTL0(m_session->DefinesFunction("Stimulus", "u"),
143  "Stimulus function not defined.");
144  m_session->LoadParameter("StimulusDuration", m_stimDuration);
145  }
146  else
147  {
148  m_stimDuration = 0;
149  }
150 
151 
152  // Search through the loaded filters and pass the cell model to any
153  // CheckpointCellModel filters loaded.
154  for (auto &x : m_filters)
155  {
156  if (x.first == "CheckpointCellModel")
157  {
158  std::shared_ptr<FilterCheckpointCellModel> c
159  = std::dynamic_pointer_cast<FilterCheckpointCellModel>(
160  x.second);
161  c->SetCellModel(m_cell);
162  }
163  }
164 
165  if (!m_explicitDiffusion)
166  {
168  }
170  }
171 
172 
173  /**
174  *
175  */
177  {
178 
179  }
180 
181 
182  /**
183  * @param inarray Input array.
184  * @param outarray Output array.
185  * @param time Current simulation time.
186  * @param lambda Timestep.
187  */
189  const Array<OneD, const Array<OneD, NekDouble> >&inarray,
190  Array<OneD, Array<OneD, NekDouble> >&outarray,
191  const NekDouble time,
192  const NekDouble lambda)
193  {
194  int nvariables = inarray.size();
195  int nq = m_fields[0]->GetNpoints();
196 
197  Array<OneD, NekDouble> grad0(nq), grad1(nq), grad2(nq), grad(nq);
198  Array<OneD, NekDouble> ggrad0(nq), ggrad1(nq), ggrad2(nq), ggrad(nq), temp(nq);
199 
200  // We solve ( \sigma\nabla^2 - HHlambda ) Y[i] = rhs [i]
201  // inarray = input: \hat{rhs} -> output: \hat{Y}
202  // outarray = output: nabla^2 \hat{Y}
203  // where \hat = modal coeffs
204  for (int i = 0; i < nvariables; ++i)
205  {
206  // Only apply diffusion to first variable.
207  if (i > 1) {
208  Vmath::Vcopy(nq, &inarray[i][0], 1, &outarray[i][0], 1);
209  continue;
210  }
211  if (i == 0) {
213  factors[StdRegions::eFactorLambda] = (1.0/lambda)*(m_capMembrane*m_chi);
214  if (m_spacedim==1) {
215  // Take first partial derivative
216  m_fields[i]->PhysDeriv(inarray[1],ggrad0);
217  // Take second partial derivative
218  m_fields[i]->PhysDeriv(0,ggrad0,ggrad0);
219  // Multiply by Intracellular-Conductivity
220  if (m_session->DefinesFunction("IntracellularConductivity") && m_session->DefinesFunction("ExtracellularConductivity"))
221  {
222  Vmath::Smul(nq, m_session->GetParameter("sigmaix"), ggrad0, 1, ggrad0, 1);
223  }
224  // Add partial derivatives together
225  Vmath::Vcopy(nq, ggrad0, 1, ggrad, 1);
226  Vmath::Smul(nq, -1.0, ggrad, 1, ggrad, 1);
227  // Multiply 1.0/timestep/lambda
228  Vmath::Smul(nq, -factors[StdRegions::eFactorLambda], inarray[i], 1, temp, 1);
229  Vmath::Vadd(nq, ggrad, 1, temp, 1, m_fields[i]->UpdatePhys(), 1);
230  // Solve a system of equations with Helmholtz solver and transform
231  // back into physical space.
232  m_fields[i]->HelmSolve(m_fields[i]->GetPhys(), m_fields[i]->UpdateCoeffs(), factors);
233  m_fields[i]->BwdTrans( m_fields[i]->GetCoeffs(), m_fields[i]->UpdatePhys());
234  m_fields[i]->SetPhysState(true);
235  // Copy the solution vector (required as m_fields must be set).
236  outarray[i] = m_fields[i]->GetPhys();
237  }
238 
239  if (m_spacedim==2) {
240  // Take first partial derivative
241  m_fields[i]->PhysDeriv(inarray[1],ggrad0,ggrad1);
242  // Take second partial derivative
243  m_fields[i]->PhysDeriv(0,ggrad0,ggrad0);
244  m_fields[i]->PhysDeriv(1,ggrad1,ggrad1);
245  // Multiply by Intracellular-Conductivity
246  if (m_session->DefinesFunction("IntracellularConductivity") && m_session->DefinesFunction("ExtracellularConductivity"))
247  {
248  Vmath::Smul(nq, m_session->GetParameter("sigmaix"), ggrad0, 1, ggrad0, 1);
249  Vmath::Smul(nq, m_session->GetParameter("sigmaiy"), ggrad1, 1, ggrad1, 1);
250  }
251  // Add partial derivatives together
252  Vmath::Vadd(nq, ggrad0, 1, ggrad1, 1, ggrad, 1);
253  Vmath::Smul(nq, -1.0, ggrad, 1, ggrad, 1);
254  // Multiply 1.0/timestep/lambda
255  Vmath::Smul(nq, -factors[StdRegions::eFactorLambda], inarray[i], 1, temp, 1);
256  Vmath::Vadd(nq, ggrad, 1, temp, 1, m_fields[i]->UpdatePhys(), 1);
257  // Solve a system of equations with Helmholtz solver and transform
258  // back into physical space.
259  m_fields[i]->HelmSolve(m_fields[i]->GetPhys(), m_fields[i]->UpdateCoeffs(),factors,m_vardiffi);
260  m_fields[i]->BwdTrans( m_fields[i]->GetCoeffs(), m_fields[i]->UpdatePhys());
261  m_fields[i]->SetPhysState(true);
262  // Copy the solution vector (required as m_fields must be set).
263  outarray[i] = m_fields[i]->GetPhys();
264  }
265 
266  if (m_spacedim==3) {
267  // Take first partial derivative
268  m_fields[i]->PhysDeriv(inarray[1],ggrad0,ggrad1,ggrad2);
269  // Take second partial derivative
270  m_fields[i]->PhysDeriv(0,ggrad0,ggrad0);
271  m_fields[i]->PhysDeriv(1,ggrad1,ggrad1);
272  m_fields[i]->PhysDeriv(2,ggrad2,ggrad2);
273  // Multiply by Intracellular-Conductivity
274  if (m_session->DefinesFunction("IntracellularConductivity") && m_session->DefinesFunction("ExtracellularConductivity"))
275  {
276  Vmath::Smul(nq, m_session->GetParameter("sigmaix"), ggrad0, 1, ggrad0, 1);
277  Vmath::Smul(nq, m_session->GetParameter("sigmaiy"), ggrad1, 1, ggrad1, 1);
278  Vmath::Smul(nq, m_session->GetParameter("sigmaiz"), ggrad2, 1, ggrad2, 1);
279  }
280  // Add partial derivatives together
281  Vmath::Vadd(nq, ggrad0, 1, ggrad1, 1, ggrad, 1);
282  Vmath::Vadd(nq, ggrad2, 1, ggrad, 1, ggrad, 1);
283  Vmath::Smul(nq, -1.0, ggrad, 1, ggrad, 1);
284  // Multiply 1.0/timestep/lambda
285  Vmath::Smul(nq, -factors[StdRegions::eFactorLambda], inarray[i], 1, temp, 1);
286  Vmath::Vadd(nq, ggrad, 1, temp, 1, m_fields[i]->UpdatePhys(), 1);
287  // Solve a system of equations with Helmholtz solver and transform
288  // back into physical space.
289  m_fields[i]->HelmSolve(m_fields[i]->GetPhys(), m_fields[i]->UpdateCoeffs(),factors,m_vardiffi);
290  m_fields[i]->BwdTrans( m_fields[i]->GetCoeffs(), m_fields[i]->UpdatePhys());
291  m_fields[i]->SetPhysState(true);
292  // Copy the solution vector (required as m_fields must be set).
293  outarray[i] = m_fields[i]->GetPhys();
294  }
295 
296  }
297  if (i == 1) {
299  factors[StdRegions::eFactorLambda] = 0.0;
300  if (m_spacedim==1) {
301  // Take first partial derivative
302  m_fields[i]->PhysDeriv(m_fields[0]->UpdatePhys(),grad0);
303  // Take second derivative
304  m_fields[i]->PhysDeriv(0,grad0,grad0);
305  // Multiply by Intracellular-Conductivity
306  if (m_session->DefinesFunction("IntracellularConductivity") && m_session->DefinesFunction("ExtracellularConductivity"))
307  {
308  Vmath::Smul(nq, m_session->GetParameter("sigmaix"), grad0, 1, grad0, 1);
309  }
310  // and sum terms
311  Vmath::Vcopy(nq, grad0, 1, grad, 1);
312  Vmath::Smul(nq, (-1.0*m_session->GetParameter("sigmaix"))/(m_session->GetParameter("sigmaix")+m_session->GetParameter("sigmaix")), grad, 1, grad, 1);
313  // Now solve Poisson problem for \phi_e
314  m_fields[i]->SetPhys(grad);
315  m_fields[i]->HelmSolve(m_fields[i]->GetPhys(), m_fields[i]->UpdateCoeffs(), factors);
316  m_fields[i]->BwdTrans( m_fields[i]->GetCoeffs(), m_fields[i]->UpdatePhys());
317  m_fields[i]->SetPhysState(true);
318  // Copy the solution vector (required as m_fields must be set).
319  outarray[i] = m_fields[i]->GetPhys();
320  }
321 
322  if (m_spacedim==2) {
323  // Take first partial derivative
324  m_fields[i]->PhysDeriv(m_fields[0]->UpdatePhys(),grad0,grad1);
325  // Take second derivative
326  m_fields[i]->PhysDeriv(0,grad0,grad0);
327  m_fields[i]->PhysDeriv(1,grad1,grad1);
328  // Multiply by Intracellular-Conductivity
329  if (m_session->DefinesFunction("IntracellularConductivity") && m_session->DefinesFunction("ExtracellularConductivity"))
330  {
331  Vmath::Smul(nq, m_session->GetParameter("sigmaix"), grad0, 1, grad0, 1);
332  Vmath::Smul(nq, m_session->GetParameter("sigmaiy"), grad1, 1, grad1, 1);
333  }
334  // and sum terms
335  Vmath::Vadd(nq, grad0, 1, grad1, 1, grad, 1);
336  Vmath::Smul(nq, -1.0, grad, 1, grad, 1);
337  // Now solve Poisson problem for \phi_e
338  m_fields[i]->SetPhys(grad);
339  m_fields[i]->HelmSolve(m_fields[i]->GetPhys(), m_fields[i]->UpdateCoeffs(), factors, m_vardiffie);
340  m_fields[i]->BwdTrans( m_fields[i]->GetCoeffs(), m_fields[i]->UpdatePhys());
341  m_fields[i]->SetPhysState(true);
342  // Copy the solution vector (required as m_fields must be set).
343  outarray[i] = m_fields[i]->GetPhys();
344  }
345 
346  if (m_spacedim==3) {
347  // Take first partial derivative
348  m_fields[i]->PhysDeriv(m_fields[0]->UpdatePhys(),grad0,grad1,grad2);
349  // Take second derivative
350  m_fields[i]->PhysDeriv(0,grad0,grad0);
351  m_fields[i]->PhysDeriv(1,grad1,grad1);
352  m_fields[i]->PhysDeriv(2,grad2,grad2);
353  // Multiply by Intracellular-Conductivity
354  if (m_session->DefinesFunction("IntracellularConductivity") && m_session->DefinesFunction("ExtracellularConductivity"))
355  {
356  Vmath::Smul(nq, m_session->GetParameter("sigmaix"), grad0, 1, grad0, 1);
357  Vmath::Smul(nq, m_session->GetParameter("sigmaiy"), grad1, 1, grad1, 1);
358  Vmath::Smul(nq, m_session->GetParameter("sigmaiz"), grad2, 1, grad2, 1);
359  }
360  // and sum terms
361  Vmath::Vadd(nq, grad0, 1, grad1, 1, grad, 1);
362  Vmath::Vadd(nq, grad2, 1, grad, 1, grad, 1);
363  Vmath::Smul(nq, -1.0, grad, 1, grad, 1);
364  // Now solve Poisson problem for \phi_e
365  m_fields[i]->SetPhys(grad);
366  m_fields[i]->HelmSolve(m_fields[i]->GetPhys(), m_fields[i]->UpdateCoeffs(), factors, m_vardiffie);
367  m_fields[i]->BwdTrans( m_fields[i]->GetCoeffs(), m_fields[i]->UpdatePhys());
368  m_fields[i]->SetPhysState(true);
369  // Copy the solution vector (required as m_fields must be set).
370  outarray[i] = m_fields[i]->GetPhys();
371  }
372 
373  }
374  }
375  }
376 
377 
379  const Array<OneD, const Array<OneD, NekDouble> >&inarray,
380  Array<OneD, Array<OneD, NekDouble> >&outarray,
381  const NekDouble time)
382  {
383  int nq = m_fields[0]->GetNpoints();
384  m_cell->TimeIntegrate(inarray, outarray, time);
385  if (m_stimDuration > 0 && time < m_stimDuration)
386  {
387  Array<OneD,NekDouble> x0(nq);
388  Array<OneD,NekDouble> x1(nq);
389  Array<OneD,NekDouble> x2(nq);
390  Array<OneD,NekDouble> result(nq);
391 
392  // get the coordinates
393  m_fields[0]->GetCoords(x0,x1,x2);
394 
396  = m_session->GetFunction("Stimulus", "u");
397  ifunc->Evaluate(x0,x1,x2,time, result);
398 
399  Vmath::Vadd(nq, outarray[0], 1, result, 1, outarray[0], 1);
400  }
401  Vmath::Smul(nq, 1.0/m_capMembrane, outarray[0], 1, outarray[0], 1);
402  }
403 
404 
406  bool dumpInitialConditions,
407  const int domain)
408  {
409  EquationSystem::v_SetInitialConditions(initialtime, dumpInitialConditions, domain);
410  m_cell->Initialise();
411  }
412 
413  /**
414  *
415  */
417  {
419 
420  /// @TODO Update summary
421  ASSERTL0(false, "Update the generate summary");
422 //
423 // out << "\tChi : " << m_chi << endl;
424 // out << "\tCm : " << m_capMembrane << endl;
425 // if (m_session->DefinesFunction("IntracellularConductivity", "AnisotropicConductivityX") &&
426 // m_session->GetFunctionType("IntracellularConductivity", "AnisotropicConductivityX") == LibUtilities::eFunctionTypeExpression)
427 // {
428 // out << "\tIntra-Diffusivity-x : "
429 // << m_session->GetFunction("IntracellularConductivity", "AnisotropicConductivityX")->GetExpression()
430 // << endl;
431 // }
432 // if (m_session->DefinesFunction("IntracellularConductivity", "AnisotropicConductivityY") &&
433 // m_session->GetFunctionType("IntracellularConductivity", "AnisotropicConductivityY") == LibUtilities::eFunctionTypeExpression)
434 // {
435 // out << "\tIntra-Diffusivity-y : "
436 // << m_session->GetFunction("IntracellularConductivity", "AnisotropicConductivityY")->GetExpression()
437 // << endl;
438 // }
439 // if (m_session->DefinesFunction("IntracellularConductivity", "AnisotropicConductivityZ") &&
440 // m_session->GetFunctionType("IntracellularConductivity", "AnisotropicConductivityZ") == LibUtilities::eFunctionTypeExpression)
441 // {
442 // out << "\tIntra-Diffusivity-z : "
443 // << m_session->GetFunction("IntracellularConductivity", "AnisotropicConductivityZ")->GetExpression()
444 // << endl;
445 // }
446 // if (m_session->DefinesFunction("ExtracellularConductivity", "AnisotropicConductivityX") &&
447 // m_session->GetFunctionType("ExtracellularConductivity", "AnisotropicConductivityX") == LibUtilities::eFunctionTypeExpression)
448 // {
449 // out << "\tExtra-Diffusivity-x : "
450 // << m_session->GetFunction("ExtracellularConductivity", "AnisotropicConductivityX")->GetExpression()
451 // << endl;
452 // }
453 // if (m_session->DefinesFunction("ExtracellularConductivity", "AnisotropicConductivityY") &&
454 // m_session->GetFunctionType("ExtracellularConductivity", "AnisotropicConductivityY") == LibUtilities::eFunctionTypeExpression)
455 // {
456 // out << "\tExtra-Diffusivity-y : "
457 // << m_session->GetFunction("ExtracellularConductivity", "AnisotropicConductivityY")->GetExpression()
458 // << endl;
459 // }
460 // if (m_session->DefinesFunction("ExtracellularConductivity", "AnisotropicConductivityZ") &&
461 // m_session->GetFunctionType("ExtracellularConductivity", "AnisotropicConductivityZ") == LibUtilities::eFunctionTypeExpression)
462 // {
463 // out << "\tExtra-Diffusivity-z : "
464 // << m_session->GetFunction("ExtracellularConductivity", "AnisotropicConductivityZ")->GetExpression()
465 // << endl;
466 // }
467  m_cell->GenerateSummary(s);
468  }
469 
470 }
#define ASSERTL0(condition, msg)
Definition: ErrorUtil.hpp:216
NekDouble m_chi
Definition: Bidomain.h:103
Array< OneD, Array< OneD, NekDouble > > tmp3
Definition: Bidomain.h:110
Array< OneD, Array< OneD, NekDouble > > tmp2
Definition: Bidomain.h:109
StdRegions::VarCoeffMap m_vardiffi
Definition: Bidomain.h:105
Array< OneD, Array< OneD, NekDouble > > tmp1
Definition: Bidomain.h:108
virtual ~Bidomain()
Desctructor.
Definition: Bidomain.cpp:176
void DoOdeRhs(const Array< OneD, const Array< OneD, NekDouble > > &inarray, Array< OneD, Array< OneD, NekDouble > > &outarray, const NekDouble time)
Computes the reaction terms and .
Definition: Bidomain.cpp:378
CellModelSharedPtr m_cell
Cell model.
Definition: Bidomain.h:101
NekDouble m_capMembrane
Definition: Bidomain.h:103
virtual void v_SetInitialConditions(NekDouble initialtime, bool dumpInitialConditions, const int domain)
Sets a custom initial condition.
Definition: Bidomain.cpp:405
StdRegions::VarCoeffMap m_vardiffie
Definition: Bidomain.h:106
NekDouble m_stimDuration
Stimulus current.
Definition: Bidomain.h:113
void DoImplicitSolve(const Array< OneD, const Array< OneD, NekDouble > > &inarray, Array< OneD, Array< OneD, NekDouble > > &outarray, NekDouble time, NekDouble lambda)
Solve for the diffusion term.
Definition: Bidomain.cpp:188
virtual void v_InitObject()
Init object for UnsteadySystem class.
Definition: Bidomain.cpp:78
virtual void v_GenerateSummary(SummaryList &s)
Prints a summary of the model parameters.
Definition: Bidomain.cpp:416
tKey RegisterCreatorFunction(tKey idKey, CreatorFunction classCreator, std::string pDesc="")
Register a class with the factory.
Definition: NekFactory.hpp:200
tBaseSharedPtr CreateInstance(tKey idKey, tParam... args)
Create an instance of the class referred to by idKey.
Definition: NekFactory.hpp:145
void DefineOdeRhs(FuncPointerT func, ObjectPointerT obj)
void DefineImplicitSolve(FuncPointerT func, ObjectPointerT obj)
int m_spacedim
Spatial dimension (>= expansion dim).
virtual SOLVER_UTILS_EXPORT void v_SetInitialConditions(NekDouble initialtime=0.0, bool dumpInitialConditions=true, const int domain=0)
Array< OneD, MultiRegions::ExpListSharedPtr > m_fields
Array holding all dependent variables.
LibUtilities::SessionReaderSharedPtr m_session
The session reader.
Base class for unsteady solvers.
LibUtilities::TimeIntegrationSchemeOperators m_ode
The time integration scheme operators to use.
std::vector< std::pair< std::string, FilterSharedPtr > > m_filters
bool m_explicitDiffusion
Indicates if explicit or implicit treatment of diffusion is used.
virtual SOLVER_UTILS_EXPORT void v_GenerateSummary(SummaryList &s)
Print a summary of time stepping parameters.
virtual SOLVER_UTILS_EXPORT void v_InitObject()
Init object for UnsteadySystem class.
std::shared_ptr< SessionReader > SessionReaderSharedPtr
std::shared_ptr< Equation > EquationSharedPtr
Definition: Equation.h:131
std::vector< std::pair< std::string, std::string > > SummaryList
Definition: Misc.h:46
EquationSystemFactory & GetEquationSystemFactory()
std::shared_ptr< MeshGraph > MeshGraphSharedPtr
Definition: MeshGraph.h:174
std::map< ConstFactorType, NekDouble > ConstFactorMap
Definition: StdRegions.hpp:314
The above copyright notice and this permission notice shall be included.
Definition: CoupledSolver.h:1
CellModelFactory & GetCellModelFactory()
Definition: CellModel.cpp:46
double NekDouble
void Vadd(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Add vector z = x+y.
Definition: Vmath.cpp:322
void Smul(int n, const T alpha, const T *x, const int incx, T *y, const int incy)
Scalar multiply y = alpha*x.
Definition: Vmath.cpp:225
void Vcopy(int n, const T *x, const int incx, T *y, const int incy)
Definition: Vmath.cpp:1199