Nektar++
Deform.cpp
Go to the documentation of this file.
1 ///////////////////////////////////////////////////////////////////////////////
2 //
3 // File: Deform.cpp
4 //
5 // For more information, please see: http://www.nektar.info
6 //
7 // The MIT License
8 //
9 // Copyright (c) 2006 Division of Applied Mathematics, Brown University (USA),
10 // Department of Aeronautics, Imperial College London (UK), and Scientific
11 // Computing and Imaging Institute, University of Utah (USA).
12 //
13 // Permission is hereby granted, free of charge, to any person obtaining a
14 // copy of this software and associated documentation files (the "Software"),
15 // to deal in the Software without restriction, including without limitation
16 // the rights to use, copy, modify, merge, publish, distribute, sublicense,
17 // and/or sell copies of the Software, and to permit persons to whom the
18 // Software is furnished to do so, subject to the following conditions:
19 //
20 // The above copyright notice and this permission notice shall be included
21 // in all copies or substantial portions of the Software.
22 //
23 // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
24 // OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
25 // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
26 // THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
27 // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
28 // FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
29 // DEALINGS IN THE SOFTWARE.
30 //
31 // Description: Deformation of mesh from fields.
32 //
33 ///////////////////////////////////////////////////////////////////////////////
34 
35 #include <string>
36 
39 #include <GlobalMapping/Deform.h>
41 #include <StdRegions/StdSegExp.h>
42 #include <StdRegions/StdQuadExp.h>
45 #include <MultiRegions/ExpList.h>
46 
47 using namespace std;
48 
49 namespace Nektar {
50 namespace GlobalMapping {
51 
52  /**
53  * @brief Update geometry according to displacement that is in current
54  * fields.
55  *
56  * @param graph The MeshGraph of the current geometry.
57  * @param fields The fields containing the displacement.
58  */
62  bool modal)
63  {
64  // Clear existing curvature.
65  SpatialDomains::CurveMap &curvedEdges = graph->GetCurvedEdges();
66  SpatialDomains::CurveMap &curvedFaces = graph->GetCurvedFaces();
67  curvedEdges.clear();
68  curvedFaces.clear();
69 
70  int i, j, k, l, dim;
71 
72  // Sets to hold IDs of updated vertices to avoid duplicating effort.
73  set<int> updatedVerts, updatedEdges, updatedFaces;
74 
75  dim = graph->GetSpaceDimension();
78 
79  for (i = 0; i < fields[0]->GetExpSize(); ++i)
80  {
81  LocalRegions::ExpansionSharedPtr exp = fields[0]->GetExp(i);
82  int offset = fields[0]->GetPhys_Offset(i);
83  int nquad = exp->GetTotPoints();
84 
85  // Extract displacement for this element, allocate storage for
86  // elemental coordinates.
87  for (j = 0; j < dim; ++j)
88  {
89  phys[j] = Array<OneD, NekDouble>(
90  nquad, fields[j]->UpdatePhys() + offset);
91  coord[j] = Array<OneD, NekDouble>(nquad);
92  }
93 
94  // In 2D loop over edges.
95  if (dim == 2)
96  {
97  exp->GetCoords(coord[0], coord[1]);
98 
100  std::dynamic_pointer_cast<SpatialDomains::Geometry2D>(
101  exp->GetGeom());
102 
103  for (j = 0; j < exp->GetGeom()->GetNumEdges(); ++j)
104  {
105  SpatialDomains::Geometry1DSharedPtr edge = geom->GetEdge(j);
106 
107  // This edge has already been processed.
108  if (updatedEdges.find(edge->GetGlobalID()) !=
109  updatedEdges.end())
110  {
111  continue;
112  }
113 
114  // Extract edge displacement.
115  int nEdgePts = exp->GetTraceNumPoints(j);
116  Array<OneD, Array<OneD, NekDouble> > edgePhys (dim);
117  Array<OneD, Array<OneD, NekDouble> > edgeCoord(dim);
118 
119  const LibUtilities::BasisKey B(
120  LibUtilities::eModified_A, nEdgePts,
124  StdRegions::StdSegExp>::AllocateSharedPtr(B);
125 
126  for (k = 0; k < dim; ++k)
127  {
128  edgePhys [k] = Array<OneD, NekDouble>(nEdgePts);
129  edgeCoord[k] = Array<OneD, NekDouble>(nEdgePts);
130  exp->GetTracePhysVals(j, seg, phys [k], edgePhys [k]);
131  exp->GetTracePhysVals(j, seg, coord[k], edgeCoord[k]);
132  }
133 
134  // Update verts
135  for (k = 0; k < 2; ++k)
136  {
137  int id = edge->GetVid(k);
138  if (updatedVerts.find(id) != updatedVerts.end())
139  {
140  continue;
141  }
142 
144  edge->GetVertex(k);
145 
146  pt->UpdatePosition(
147  (*pt)(0) + edgePhys[0][k*(nEdgePts-1)],
148  (*pt)(1) + edgePhys[1][k*(nEdgePts-1)],
149  (*pt)(2));
150 
151  updatedVerts.insert(id);
152  }
153 
154  // Update curve
156  SpatialDomains::Curve>::AllocateSharedPtr(
157  edge->GetGlobalID(),
159 
160  for (k = 0; k < nEdgePts; ++k)
161  {
165  dim, edge->GetGlobalID(),
166  edgeCoord[0][k] + edgePhys[0][k],
167  edgeCoord[1][k] + edgePhys[1][k], 0.0);
168 
169  curve->m_points.push_back(vert);
170  }
171 
172  curvedEdges[edge->GetGlobalID()] = curve;
173  updatedEdges.insert(edge->GetGlobalID());
174  }
175  }
176  else if (dim == 3)
177  {
178  exp->GetCoords(coord[0], coord[1], coord[2]);
179 
181  std::dynamic_pointer_cast<SpatialDomains::Geometry3D>(
182  exp->GetGeom());
183 
184  for (j = 0; j < exp->GetNtraces(); ++j)
185  {
186  SpatialDomains::Geometry2DSharedPtr face = geom->GetFace(j);
187 
189  exp->as<LocalRegions::Expansion3D>();
190 
191  // This edge has already been processed.
192  if (updatedFaces.find(face->GetGlobalID()) !=
193  updatedFaces.end())
194  {
195  continue;
196  }
197 
198  // Extract face displacement.
199  LibUtilities::BasisKey B0 = exp->GetTraceBasisKey(j,0);
200  LibUtilities::BasisKey B1 = exp->GetTraceBasisKey(j,1);
201  int nq0 = B0.GetNumPoints();
202  int nq1 = B1.GetNumPoints();
203 
206  B1.GetPointsType()
208  "Deformation requires GLL points in both "
209  "directions on a face.");
210 
212 
214  StdRegions::Orientation orient = exp->GetTraceOrient(j);
215 
216  if (face->GetShapeType() == LibUtilities::eTriangle)
217  {
219  AllocateSharedPtr(B0, B1);
220  }
221  else
222  {
224  AllocateSharedPtr(B0, B1);
225  }
226 
227  for (k = 0; k < dim; ++k)
228  {
229  Array<OneD, NekDouble> tmp(nq0*nq1);
230  newPos[k] = Array<OneD, NekDouble>(nq0*nq1);
231  exp3d->GetTracePhysVals(
232  j, faceexp, phys [k], tmp, orient);
233  exp3d->GetTracePhysVals(
234  j, faceexp, coord[k], newPos[k], orient);
235  Vmath::Vadd(
236  nq0*nq1, tmp, 1, newPos[k], 1, newPos[k], 1);
237  }
238 
239  // Now interpolate face onto a more reasonable set of
240  // points.
241  int nq = max(nq0, nq1);
242  if(!modal)
243  nq--;
244 
245  LibUtilities::PointsKey edgePts(
249 
251 
252  for (k = 0; k < dim; ++k)
253  {
254  intPos[k] = Array<OneD, NekDouble>(nq*nq);
256  faceexp->GetPointsKeys()[0],
257  faceexp->GetPointsKeys()[1],
258  newPos[k], edgePts, edgePts, intPos[k]);
259  }
260 
261  int edgeOff[2][4][2] = {
262  {
263  {0, 1},
264  {nq-1, nq},
265  {nq*(nq-1), -nq},
266  {-1,-1}
267  },
268  {
269  {0, 1},
270  {nq-1, nq},
271  {nq*nq-1, -1},
272  {nq*(nq-1), -nq}
273  }
274  };
275 
276  for (k = 0; k < face->GetNumVerts(); ++k)
277  {
278  // Update verts
279  int id = face->GetVid(k);
280  const int o =
281  face->GetShapeType() - LibUtilities::eTriangle;
282 
283  if (updatedVerts.find(id) == updatedVerts.end())
284  {
286  face->GetVertex(k);
287  pt->UpdatePosition(
288  intPos[0][edgeOff[o][k][0]],
289  intPos[1][edgeOff[o][k][0]],
290  intPos[2][edgeOff[o][k][0]]);
291  updatedVerts.insert(id);
292  }
293 
294  // Update edges
295  id = face->GetEid(k);
296  if (updatedEdges.find(id) == updatedEdges.end())
297  {
299  = face->GetEdge(k);
303  edge->GetGlobalID(),
305 
306  const int offset = edgeOff[o][k][0];
307  const int pos = edgeOff[o][k][1];
308 
309  if (face->GetEorient(k) == StdRegions::eBackwards)
310  {
311  for (l = nq-1; l >= 0; --l)
312  {
313  int m = offset + pos*l;
317  dim, edge->GetGlobalID(),
318  intPos[0][m], intPos[1][m],
319  intPos[2][m]);
320  curve->m_points.push_back(vert);
321  }
322  }
323  else
324  {
325  for (l = 0; l < nq; ++l)
326  {
327  int m = offset + pos*l;
331  dim, edge->GetGlobalID(),
332  intPos[0][m], intPos[1][m],
333  intPos[2][m]);
334  curve->m_points.push_back(vert);
335  }
336  }
337 
338  curvedEdges[edge->GetGlobalID()] = curve;
339  updatedEdges.insert(edge->GetGlobalID());
340  }
341  }
342 
343  // Update face-interior curvature
345  face->GetShapeType() == LibUtilities::eTriangle ?
348 
350  SpatialDomains::Curve>::AllocateSharedPtr(
351  face->GetGlobalID(),
352  pType);
353 
354  if (face->GetShapeType() == LibUtilities::eTriangle)
355  {
356  // This code is probably pretty crappy. Have to go from
357  // GLL-GLL points -> GLL-Gauss-Radau -> nodal triangle
358  // points.
359  const LibUtilities::BasisKey B0(
363  const LibUtilities::BasisKey B1(
367  StdRegions::StdNodalTriExp nodalTri(B0, B1, pType);
368  StdRegions::StdTriExp tri (B0, B1);
369 
370  for (k = 0; k < dim; ++k)
371  {
372  Array<OneD, NekDouble> nodal(nq*nq);
373 
375  faceexp->GetBasis(0)->GetBasisKey(),
376  faceexp->GetBasis(1)->GetBasisKey(),
377  newPos[k], B0, B1, nodal);
378 
379  Array<OneD, NekDouble> tmp1(nq*(nq+1)/2);
380  Array<OneD, NekDouble> tmp2(nq*(nq+1)/2);
381 
382  tri.FwdTrans(nodal, tmp1);
383  nodalTri.ModalToNodal(tmp1, tmp2);
384  newPos[k] = tmp2;
385  }
386 
387  for (l = 0; l < nq*(nq+1)/2; ++l)
388  {
392  dim, face->GetGlobalID(),
393  newPos[0][l], newPos[1][l], newPos[2][l]);
394  curve->m_points.push_back(vert);
395  }
396  }
397  else
398  {
399  for (l = 0; l < nq*nq; ++l)
400  {
404  dim, face->GetGlobalID(),
405  intPos[0][l], intPos[1][l], intPos[2][l]);
406  curve->m_points.push_back(vert);
407  }
408  }
409 
410  curvedFaces[face->GetGlobalID()] = curve;
411  updatedFaces.insert(face->GetGlobalID());
412  }
413  }
414  }
415 
416  // Reset geometry information
417  for (i = 0; i < fields.size(); ++i)
418  {
419  fields[i]->Reset();
420  }
421  }
422 }
423 }
#define ASSERTL1(condition, msg)
Assert Level 1 – Debugging which is used whether in FULLDEBUG or DEBUG compilation mode....
Definition: ErrorUtil.hpp:250
Describes the specification for a Basis.
Definition: Basis.h:50
int GetNumPoints() const
Return points order at which basis is defined.
Definition: Basis.h:133
PointsType GetPointsType() const
Return type of quadrature.
Definition: Basis.h:156
Defines a specification for a set of points.
Definition: Points.h:60
General purpose memory allocation routines with the ability to allocate from thread specific memory p...
void FwdTrans(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
This function performs the Forward transformation from physical space to coefficient space.
void ModalToNodal(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
Class representing a segment element in reference space.
Definition: StdSegExp.h:54
void UpdateGeometry(SpatialDomains::MeshGraphSharedPtr graph, Array< OneD, MultiRegions::ExpListSharedPtr > &fields, bool modal)
Update geometry according to displacement that is in current fields.
Definition: Deform.cpp:59
void Interp2D(const BasisKey &fbasis0, const BasisKey &fbasis1, const Array< OneD, const NekDouble > &from, const BasisKey &tbasis0, const BasisKey &tbasis1, Array< OneD, NekDouble > &to)
this function interpolates a 2D function evaluated at the quadrature points of the 2D basis,...
Definition: Interp.cpp:115
@ eNodalTriElec
2D Nodal Electrostatic Points on a Triangle
Definition: PointsType.h:69
@ eGaussLobattoLegendre
1D Gauss-Lobatto-Legendre quadrature points
Definition: PointsType.h:51
@ eGaussRadauMAlpha1Beta0
Gauss Radau pinned at x=-1, .
Definition: PointsType.h:58
@ eOrtho_A
Principle Orthogonal Functions .
Definition: BasisType.h:45
@ eOrtho_B
Principle Orthogonal Functions .
Definition: BasisType.h:46
@ eModified_A
Principle Modified Functions .
Definition: BasisType.h:48
std::shared_ptr< Expansion > ExpansionSharedPtr
Definition: Expansion.h:68
std::shared_ptr< Expansion3D > Expansion3DSharedPtr
Definition: Expansion2D.h:49
std::shared_ptr< Curve > CurveSharedPtr
Definition: Curve.hpp:61
std::unordered_map< int, CurveSharedPtr > CurveMap
Definition: Curve.hpp:62
std::shared_ptr< MeshGraph > MeshGraphSharedPtr
Definition: MeshGraph.h:174
std::shared_ptr< PointGeom > PointGeomSharedPtr
Definition: Geometry.h:59
std::shared_ptr< Geometry2D > Geometry2DSharedPtr
Definition: Geometry.h:65
std::shared_ptr< Geometry1D > Geometry1DSharedPtr
Definition: Geometry.h:63
std::shared_ptr< Geometry3D > Geometry3DSharedPtr
Definition: Geometry3D.h:52
std::shared_ptr< StdExpansion2D > StdExpansion2DSharedPtr
std::shared_ptr< StdExpansion1D > StdExpansion1DSharedPtr
The above copyright notice and this permission notice shall be included.
Definition: CoupledSolver.h:1
void Vadd(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Add vector z = x+y.
Definition: Vmath.cpp:322