Nektar++
Geometry2D.cpp
Go to the documentation of this file.
1 ////////////////////////////////////////////////////////////////////////////////
2 //
3 // File: Geometry2D.cpp
4 //
5 // For more information, please see: http://www.nektar.info/
6 //
7 // The MIT License
8 //
9 // Copyright (c) 2006 Division of Applied Mathematics, Brown University (USA),
10 // Department of Aeronautics, Imperial College London (UK), and Scientific
11 // Computing and Imaging Institute, University of Utah (USA).
12 //
13 // Permission is hereby granted, free of charge, to any person obtaining a
14 // copy of this software and associated documentation files (the "Software"),
15 // to deal in the Software without restriction, including without limitation
16 // the rights to use, copy, modify, merge, publish, distribute, sublicense,
17 // and/or sell copies of the Software, and to permit persons to whom the
18 // Software is furnished to do so, subject to the following conditions:
19 //
20 // The above copyright notice and this permission notice shall be included
21 // in all copies or substantial portions of the Software.
22 //
23 // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
24 // OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
25 // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
26 // THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
27 // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
28 // FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
29 // DEALINGS IN THE SOFTWARE.
30 //
31 // Description: 2D geometry information
32 //
33 //
34 ////////////////////////////////////////////////////////////////////////////////
35 
36 #include <iomanip>
37 
39 #include <SpatialDomains/SegGeom.h>
40 
41 #include <iomanip>
42 
43 using namespace std;
44 
45 namespace Nektar
46 {
47 namespace SpatialDomains
48 {
49 
50 Geometry2D::Geometry2D()
51 {
52 }
53 
54 Geometry2D::Geometry2D(const int coordim, CurveSharedPtr curve)
55  : Geometry(coordim), m_curve(curve)
56 {
57  ASSERTL0(m_coordim > 1,
58  "Coordinate dimension should be at least 2 for a 2D geometry");
59 }
60 
62 {
63 }
64 
66  const Array<OneD, const NekDouble> &coords,
67  const Array<OneD, const NekDouble> &ptsx,
68  const Array<OneD, const NekDouble> &ptsy,
69  Array<OneD, NekDouble> &Lcoords,
70  NekDouble &dist)
71 {
72  // Maximum iterations for convergence
73  const int MaxIterations = 51;
74  // |x-xp|^2 < EPSILON error tolerance
75  const NekDouble Tol = 1.e-8;
76  // |r,s| > LcoordDIV stop the search
77  const NekDouble LcoordDiv = 15.0;
78 
80  m_geomFactors->GetJac(m_xmap->GetPointsKeys());
81 
82  NekDouble ScaledTol = Vmath::Vsum(Jac.size(), Jac, 1) /
83  ((NekDouble)Jac.size());
84  ScaledTol *= Tol;
85 
86  NekDouble xmap, ymap, F1, F2;
87  NekDouble derx_1, derx_2, dery_1, dery_2, jac;
88 
89  // save intiial guess for later reference if required.
90  NekDouble init0 = Lcoords[0], init1 = Lcoords[1];
91 
92  Array<OneD, NekDouble> DxD1(ptsx.size());
93  Array<OneD, NekDouble> DxD2(ptsx.size());
94  Array<OneD, NekDouble> DyD1(ptsx.size());
95  Array<OneD, NekDouble> DyD2(ptsx.size());
96 
97  // Ideally this will be stored in m_geomfactors
98  m_xmap->PhysDeriv(ptsx, DxD1, DxD2);
99  m_xmap->PhysDeriv(ptsy, DyD1, DyD2);
100 
101  int cnt = 0;
103  Array<OneD, NekDouble> eta(2);
104 
105  F1 = F2 = 2000; // Starting value of Function
106  NekDouble resid;
107  while (cnt++ < MaxIterations)
108  {
109  // evaluate lagrange interpolant at Lcoords
110  m_xmap->LocCoordToLocCollapsed(Lcoords, eta);
111  I[0] = m_xmap->GetBasis(0)->GetI(eta);
112  I[1] = m_xmap->GetBasis(1)->GetI(eta + 1);
113 
114  // calculate the global point `corresponding to Lcoords
115  xmap = m_xmap->PhysEvaluate(I, ptsx);
116  ymap = m_xmap->PhysEvaluate(I, ptsy);
117 
118  F1 = coords[0] - xmap;
119  F2 = coords[1] - ymap;
120 
121  if (F1 * F1 + F2 * F2 < ScaledTol)
122  {
123  resid = sqrt(F1 * F1 + F2 * F2);
124  break;
125  }
126 
127  // Interpolate derivative metric at Lcoords
128  derx_1 = m_xmap->PhysEvaluate(I, DxD1);
129  derx_2 = m_xmap->PhysEvaluate(I, DxD2);
130  dery_1 = m_xmap->PhysEvaluate(I, DyD1);
131  dery_2 = m_xmap->PhysEvaluate(I, DyD2);
132 
133  jac = dery_2 * derx_1 - dery_1 * derx_2;
134 
135  // use analytical inverse of derivitives which are
136  // also similar to those of metric factors.
137  Lcoords[0] =
138  Lcoords[0] +
139  (dery_2 * (coords[0] - xmap) - derx_2 * (coords[1] - ymap)) / jac;
140 
141  Lcoords[1] =
142  Lcoords[1] +
143  (-dery_1 * (coords[0] - xmap) + derx_1 * (coords[1] - ymap)) / jac;
144 
145  if( !(std::isfinite(Lcoords[0]) && std::isfinite(Lcoords[1])) )
146  {
147  dist = 1e16;
148  std::ostringstream ss;
149  ss << "nan or inf found in NewtonIterationForLocCoord in element "
150  << GetGlobalID();
151  WARNINGL1(false, ss.str());
152  return;
153  }
154  if (fabs(Lcoords[0]) > LcoordDiv || fabs(Lcoords[1]) > LcoordDiv)
155  {
156  break; // lcoords have diverged so stop iteration
157  }
158  }
159 
160  m_xmap->LocCoordToLocCollapsed(Lcoords, eta);
161  if(ClampLocCoords(eta, 0.))
162  {
163  I[0] = m_xmap->GetBasis(0)->GetI(eta);
164  I[1] = m_xmap->GetBasis(1)->GetI(eta + 1);
165  // calculate the global point corresponding to Lcoords
166  xmap = m_xmap->PhysEvaluate(I, ptsx);
167  ymap = m_xmap->PhysEvaluate(I, ptsy);
168  F1 = coords[0] - xmap;
169  F2 = coords[1] - ymap;
170  dist = sqrt(F1 * F1 + F2 * F2);
171  }
172  else
173  {
174  dist = 0.;
175  }
176 
177  if (cnt >= MaxIterations)
178  {
179  Array<OneD, NekDouble> collCoords(2);
180  m_xmap->LocCoordToLocCollapsed(Lcoords, collCoords);
181 
182  // if coordinate is inside element dump error!
183  if ((collCoords[0] >= -1.0 && collCoords[0] <= 1.0) &&
184  (collCoords[1] >= -1.0 && collCoords[1] <= 1.0))
185  {
186  std::ostringstream ss;
187 
188  ss << "Reached MaxIterations (" << MaxIterations
189  << ") in Newton iteration ";
190  ss << "Init value (" << setprecision(4) << init0 << "," << init1
191  << ","
192  << ") ";
193  ss << "Fin value (" << Lcoords[0] << "," << Lcoords[1] << ","
194  << ") ";
195  ss << "Resid = " << resid << " Tolerance = " << sqrt(ScaledTol);
196 
197  WARNINGL1(cnt < MaxIterations, ss.str());
198  }
199  }
200 }
201 
203  Array<OneD, NekDouble> &Lcoords)
204 {
205  NekDouble dist = 0.;
206  if (GetMetricInfo()->GetGtype() == eRegular)
207  {
208  int v2;
210  {
211  v2 = 2;
212  }
214  {
215  v2 = 3;
216  }
217  else
218  {
219  v2 = 2;
220  ASSERTL0(false, "unrecognized 2D element type");
221  }
222 
223  NekDouble coords2 = (m_coordim == 3) ? coords[2] : 0.0;
224  PointGeom r(m_coordim, 0, coords[0], coords[1], coords2);
225 
226  // Edges
227  PointGeom er0, e10, e20;
228  PointGeom norm, orth1, orth2;
229  er0.Sub(r, *m_verts[0]);
230  e10.Sub(*m_verts[1], *m_verts[0]);
231  e20.Sub(*m_verts[v2], *m_verts[0]);
232 
233  // Obtain normal to element plane
234  norm.Mult(e10, e20);
235  // Obtain vector which are proportional to normal of e10 and e20.
236  orth1.Mult(norm, e10);
237  orth2.Mult(norm, e20);
238 
239  // Calculate length using L/|dv1| = (x-v0).n1/(dv1.n1) for coordiante 1
240  // Then rescale to [-1,1].
241  Lcoords[0] = er0.dot(orth2) / e10.dot(orth2);
242  Lcoords[0] = 2. * Lcoords[0] - 1.;
243  Lcoords[1] = er0.dot(orth1) / e20.dot(orth1);
244  Lcoords[1] = 2. * Lcoords[1] - 1.;
245 
246  // Set distance
247  Array<OneD, NekDouble> eta(2, 0.);
248  m_xmap->LocCoordToLocCollapsed(Lcoords, eta);
249  if(ClampLocCoords(eta, 0.))
250  {
251  Array<OneD, NekDouble> xi(2, 0.);
252  m_xmap->LocCollapsedToLocCoord(eta, xi);
253  xi[0] = (xi[0] + 1.) * 0.5; //re-scaled to ratio [0, 1]
254  xi[1] = (xi[1] + 1.) * 0.5;
255  for (int i = 0; i < m_coordim; ++i)
256  {
257  NekDouble tmp = xi[0]*e10[i] + xi[1]*e20[i] - er0[i];
258  dist += tmp * tmp;
259  }
260  dist = sqrt(dist);
261  }
262  }
263  else
264  {
265  v_FillGeom();
266  // Determine nearest point of coords to values in m_xmap
267  int npts = m_xmap->GetTotPoints();
268  Array<OneD, NekDouble> ptsx(npts), ptsy(npts);
269  Array<OneD, NekDouble> tmpx(npts), tmpy(npts);
270 
271  // Determine 3D manifold orientation
272  int idx = 0, idy = 1;
273  if(m_coordim == 3)
274  {
275  PointGeom e01, e21, norm;
276  e01.Sub(*m_verts[0], *m_verts[1]);
277  e21.Sub(*m_verts[2], *m_verts[1]);
278  norm.Mult(e01, e21);
279  int tmpi = 0;
280  double tmp = std::fabs(norm[0]);
281  if(tmp < fabs(norm[1]))
282  {
283  tmp = fabs(norm[1]);
284  tmpi = 1;
285  }
286  if(tmp < fabs(norm[2]))
287  {
288  tmpi = 2;
289  }
290  idx = (tmpi + 1) % 3;
291  idy = (tmpi + 2) % 3;
292  }
293  Array<OneD, NekDouble> tmpcoords(2);
294  tmpcoords[0] = coords[idx];
295  tmpcoords[1] = coords[idy];
296 
297  m_xmap->BwdTrans(m_coeffs[idx], ptsx);
298  m_xmap->BwdTrans(m_coeffs[idy], ptsy);
299 
300  const Array<OneD, const NekDouble> za = m_xmap->GetPoints(0);
301  const Array<OneD, const NekDouble> zb = m_xmap->GetPoints(1);
302 
303  // guess the first local coords based on nearest point
304  Vmath::Sadd(npts, -tmpcoords[0], ptsx, 1, tmpx, 1);
305  Vmath::Sadd(npts, -tmpcoords[1], ptsy, 1, tmpy, 1);
306  Vmath::Vmul(npts, tmpx, 1, tmpx, 1, tmpx, 1);
307  Vmath::Vvtvp(npts, tmpy, 1, tmpy, 1, tmpx, 1, tmpx, 1);
308 
309  int min_i = Vmath::Imin(npts, tmpx, 1);
310 
311  Array<OneD, NekDouble> eta(2, 0.);
312  eta[0] = za[min_i % za.size()];
313  eta[1] = zb[min_i / za.size()];
314  m_xmap->LocCollapsedToLocCoord(eta, Lcoords);
315 
316  // Perform newton iteration to find local coordinates
317  NewtonIterationForLocCoord(tmpcoords, ptsx, ptsy, Lcoords, dist);
318  }
319  return dist;
320 }
321 
323 {
324  return m_verts.size();
325 }
326 
328 {
329  return m_edges.size();
330 }
331 
333 {
334  ASSERTL2(i >= 0 && i < m_verts.size(), "Index out of range");
335  return m_verts[i];
336 }
337 
339 {
340  ASSERTL2(i >= 0 && i < m_edges.size(), "Index out of range");
341  return m_edges[i];
342 }
343 
345 {
346  ASSERTL2(i >= 0 && i < m_eorient.size(), "Index out of range");
347  return m_eorient[i];
348 }
349 
351 {
352  return 2;
353 }
354 
355 }
356 }
#define WARNINGL1(condition, msg)
Definition: ErrorUtil.hpp:251
#define ASSERTL0(condition, msg)
Definition: ErrorUtil.hpp:216
#define ASSERTL2(condition, msg)
Assert Level 2 – Debugging which is used FULLDEBUG compilation mode. This level assert is designed to...
Definition: ErrorUtil.hpp:274
void NewtonIterationForLocCoord(const Array< OneD, const NekDouble > &coords, const Array< OneD, const NekDouble > &ptsx, const Array< OneD, const NekDouble > &ptsy, Array< OneD, NekDouble > &Lcoords, NekDouble &dist)
Definition: Geometry2D.cpp:65
virtual Geometry1DSharedPtr v_GetEdge(int i) const
Returns edge i of this object.
Definition: Geometry2D.cpp:338
std::vector< StdRegions::Orientation > m_eorient
Definition: Geometry2D.h:80
virtual int v_GetShapeDim() const
Get the object's shape dimension.
Definition: Geometry2D.cpp:350
virtual StdRegions::Orientation v_GetEorient(const int i) const
Returns the orientation of edge i with respect to the ordering of edges in the standard element.
Definition: Geometry2D.cpp:344
virtual int v_GetNumVerts() const
Get the number of vertices of this object.
Definition: Geometry2D.cpp:322
virtual int v_GetNumEdges() const
Get the number of edges of this object.
Definition: Geometry2D.cpp:327
virtual NekDouble v_GetLocCoords(const Array< OneD, const NekDouble > &coords, Array< OneD, NekDouble > &Lcoords)
Determine the local collapsed coordinates that correspond to a given Cartesian coordinate for this ge...
Definition: Geometry2D.cpp:202
virtual PointGeomSharedPtr v_GetVertex(int i) const
Definition: Geometry2D.cpp:332
Base class for shape geometry information.
Definition: Geometry.h:84
bool ClampLocCoords(Array< OneD, NekDouble > &locCoord, NekDouble tol)
Clamp local coords to be within standard regions [-1, 1]^dim.
Definition: Geometry.cpp:486
virtual void v_FillGeom()
Populate the coordinate mapping Geometry::m_coeffs information from any children geometry elements.
Definition: Geometry.cpp:346
int GetGlobalID(void) const
Get the ID of this object.
Definition: Geometry.h:319
LibUtilities::ShapeType m_shapeType
Type of shape.
Definition: Geometry.h:199
Array< OneD, Array< OneD, NekDouble > > m_coeffs
Array containing expansion coefficients of m_xmap.
Definition: Geometry.h:203
GeomFactorsSharedPtr GetMetricInfo()
Get the geometric factors for this object.
Definition: Geometry.h:303
StdRegions::StdExpansionSharedPtr m_xmap
mapping containing isoparametric transformation.
Definition: Geometry.h:191
GeomFactorsSharedPtr m_geomFactors
Geometric factors.
Definition: Geometry.h:187
int m_coordim
Coordinate dimension of this geometry object.
Definition: Geometry.h:185
void Sub(PointGeom &a, PointGeom &b)
Definition: PointGeom.cpp:125
void Mult(PointGeom &a, PointGeom &b)
_this = a x b
Definition: PointGeom.cpp:134
NekDouble dot(PointGeom &a)
retun the dot product between this and input a
Definition: PointGeom.cpp:188
std::shared_ptr< Curve > CurveSharedPtr
Definition: Curve.hpp:61
@ eRegular
Geometry is straight-sided with constant geometric factors.
std::shared_ptr< PointGeom > PointGeomSharedPtr
Definition: Geometry.h:59
std::shared_ptr< Geometry1D > Geometry1DSharedPtr
Definition: Geometry.h:63
The above copyright notice and this permission notice shall be included.
Definition: CoupledSolver.h:1
double NekDouble
void Vmul(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Multiply vector z = x*y.
Definition: Vmath.cpp:192
void Vvtvp(int n, const T *w, const int incw, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
vvtvp (vector times vector plus vector): z = w*x + y
Definition: Vmath.cpp:513
T Vsum(int n, const T *x, const int incx)
Subtract return sum(x)
Definition: Vmath.cpp:846
int Imin(int n, const T *x, const int incx)
Return the index of the minimum element in x.
Definition: Vmath.cpp:966
void Sadd(int n, const T alpha, const T *x, const int incx, T *y, const int incy)
Add vector y = alpha - x.
Definition: Vmath.cpp:341
scalarT< T > sqrt(scalarT< T > in)
Definition: scalar.hpp:267