Nektar++
LEE.cpp
Go to the documentation of this file.
1 ///////////////////////////////////////////////////////////////////////////////
2 //
3 // File LEE.cpp
4 //
5 // For more information, please see: http://www.nektar.info
6 //
7 // The MIT License
8 //
9 // Copyright (c) 2017 Kilian Lackhove
10 // Copyright (c) 2006 Division of Applied Mathematics, Brown University (USA),
11 // Department of Aeronautics, Imperial College London (UK), and Scientific
12 // Computing and Imaging Institute, University of Utah (USA).
13 //
14 // Permission is hereby granted, free of charge, to any person obtaining a
15 // copy of this software and associated documentation files (the "Software"),
16 // to deal in the Software without restriction, including without limitation
17 // the rights to use, copy, modify, merge, publish, distribute, sublicense,
18 // and/or sell copies of the Software, and to permit persons to whom the
19 // Software is furnished to do so, subject to the following conditions:
20 //
21 // The above copyright notice and this permission notice shall be included
22 // in all copies or substantial portions of the Software.
23 //
24 // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
25 // OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
26 // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
27 // THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
28 // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
29 // FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
30 // DEALINGS IN THE SOFTWARE.
31 //
32 // Description: Linearized Euler Equations
33 //
34 ///////////////////////////////////////////////////////////////////////////////
35 
36 #include <iostream>
37 
39 
40 using namespace std;
41 
42 namespace Nektar
43 {
44 string LEE::className = GetEquationSystemFactory().RegisterCreatorFunction(
45  "LEE", LEE::create, "Linearized Euler Equations");
46 
47 LEE::LEE(const LibUtilities::SessionReaderSharedPtr &pSession,
49  : UnsteadySystem(pSession, pGraph), AcousticSystem(pSession, pGraph)
50 {
51  m_ip = 0;
52  m_irho = 1;
53  m_iu = 2;
54 
55  m_conservative = true;
56 }
57 
58 /**
59  * @brief Initialization object for the LEE class.
60  */
62 {
64 
65  m_bfNames.push_back("gamma");
66 
67  // Initialize basefield again
69  for (int i = 0; i < m_bf.size(); ++i)
70  {
72  }
73  GetFunction("Baseflow", m_fields[0], true)
74  ->Evaluate(m_bfNames, m_bf, m_time);
75 
76  // Define the normal velocity fields
78  for (int i = 0; i < m_bfFwdBwd.size(); i++)
79  {
81  }
82 
83  string riemName;
84  m_session->LoadSolverInfo("UpwindType", riemName, "Upwind");
85  if (boost::to_lower_copy(riemName) == "characteristics" ||
86  boost::to_lower_copy(riemName) == "leeupwind" ||
87  boost::to_lower_copy(riemName) == "upwind")
88  {
89  riemName = "LEEUpwind";
90  }
91  if (boost::to_lower_copy(riemName) == "laxfriedrichs")
92  {
93  riemName = "LEELaxFriedrichs";
94  }
96  riemName, m_session);
97  m_riemannSolver->SetVector("N", &LEE::GetNormals, this);
98  m_riemannSolver->SetVector("basefieldFwdBwd", &LEE::GetBasefieldFwdBwd,
99  this);
100  m_riemannSolver->SetAuxVec("vecLocs", &LEE::GetVecLocs, this);
101 
102  // Set up advection operator
103  string advName;
104  m_session->LoadSolverInfo("AdvectionType", advName, "WeakDG");
105  m_advection =
107  m_advection->SetFluxVector(&LEE::v_GetFluxVector, this);
108  m_advection->SetRiemannSolver(m_riemannSolver);
109  m_advection->InitObject(m_session, m_fields);
110 
112  {
115  }
116  else
117  {
118  ASSERTL0(false, "Implicit LEE not set up.");
119  }
120 }
121 
122 /**
123  * @brief Destructor for LEE class.
124  */
126 {
127 }
128 
129 /**
130  * @brief Return the flux vector for the LEE equations.
131  *
132  * @param physfield Fields.
133  * @param flux Resulting flux. flux[eq][dir][pt]
134  */
136  const Array<OneD, Array<OneD, NekDouble>> &physfield,
138 {
139  int nq = physfield[0].size();
140 
141  ASSERTL1(flux[0].size() == m_spacedim,
142  "Dimension of flux array and velocity array do not match");
143 
146  for (int i = 0; i < m_spacedim; ++i)
147  {
148  u0[i] = m_bf[2 + i];
149  }
150 
151  Array<OneD, const NekDouble> p = physfield[m_ip];
152  Array<OneD, const NekDouble> rho = physfield[m_irho];
154  for (int i = 0; i < m_spacedim; ++i)
155  {
156  ru[i] = physfield[m_iu + i];
157  }
158 
159  // F_{adv,p',j} = c0^2 * ru_j + u0_j * p
160  for (int j = 0; j < m_spacedim; ++j)
161  {
162  int i = 0;
163  Vmath::Vvtvvtp(nq, c0sq, 1, ru[j], 1, u0[j], 1, p, 1, flux[i][j], 1);
164  }
165 
166  // F_{adv,rho',j} = u0_j * rho' + ru_j
167  for (int j = 0; j < m_spacedim; ++j)
168  {
169  int i = 1;
170  // u0_j * rho' + ru_j
171  Vmath::Vvtvp(nq, u0[j], 1, rho, 1, ru[j], 1, flux[i][j], 1);
172  }
173 
174  for (int i = 0; i < m_spacedim; ++i)
175  {
176  // F_{adv,u'_i,j} = ru_i * u0_j + delta_ij * p
177  for (int j = 0; j < m_spacedim; ++j)
178  {
179  // ru_i * u0_j
180  Vmath::Vmul(nq, ru[i], 1, u0[j], 1, flux[m_iu + i][j], 1);
181 
182  // kronecker delta
183  if (i == j)
184  {
185  // delta_ij + p
186  Vmath::Vadd(nq, p, 1, flux[m_iu + i][j], 1, flux[m_iu + i][j],
187  1);
188  }
189  }
190  }
191 }
192 
194  Array<OneD, Array<OneD, NekDouble>> &outarray)
195 {
196  int nq = GetTotPoints();
197 
199  for (int i = 0; i < m_spacedim + 2; ++i)
200  {
201  if (i == 1)
202  {
203  // skip rho
204  continue;
205  }
206 
207  linTerm[i] = Array<OneD, NekDouble>(nq);
208  }
209 
213 
214  Array<OneD, NekDouble> gammaMinOne(nq);
215  Vmath::Sadd(nq, -1.0, gamma, 1, gammaMinOne, 1);
216 
217  Array<OneD, NekDouble> p0(nq);
218  Vmath::Vmul(nq, c0sq, 1, rho0, 1, p0, 1);
219  Vmath::Vdiv(nq, p0, 1, gamma, 1, p0, 1);
220 
222  for (int i = 0; i < m_spacedim; ++i)
223  {
224  u0[i] = m_bf[2 + i];
225  }
226 
227  Array<OneD, const NekDouble> p = inarray[0];
228  Array<OneD, const NekDouble> rho = inarray[1];
229 
231  for (int i = 0; i < m_spacedim; ++i)
232  {
233  ru[i] = inarray[2 + i];
234  }
235 
236  Array<OneD, NekDouble> grad(nq);
237  Array<OneD, NekDouble> tmp1(nq);
238 
239  // p
240  {
241  Vmath::Zero(nq, linTerm[m_ip], 1);
242  // (1-gamma) ( ru_j / rho0 * dp0/dx_j - p * du0_j/dx_j )
243  for (int j = 0; j < m_spacedim; ++j)
244  {
245  // ru_j / rho0 * dp0/dx_j
246  m_fields[0]->PhysDeriv(MultiRegions::DirCartesianMap[j], p0, grad);
247  Vmath::Vmul(nq, grad, 1, ru[j], 1, tmp1, 1);
248  Vmath::Vdiv(nq, tmp1, 1, rho0, 1, tmp1, 1);
249  // p * du0_j/dx_j - ru_j / rho0 * dp0/dx_j
250  m_fields[0]->PhysDeriv(MultiRegions::DirCartesianMap[j], u0[j],
251  grad);
252  Vmath::Vvtvm(nq, grad, 1, p, 1, tmp1, 1, tmp1, 1);
253  // (gamma-1) (p * du0_j/dx_j - ru_j / rho0 * dp0/dx_j)
254  Vmath::Vvtvp(nq, gammaMinOne, 1, tmp1, 1, linTerm[m_ip], 1,
255  linTerm[m_ip], 1);
256  }
257  }
258 
259  // rho has no linTerm
260 
261  // ru_i
262  for (int i = 0; i < m_spacedim; ++i)
263  {
264  Vmath::Zero(nq, linTerm[m_iu + i], 1);
265  // du0_i/dx_j * (u0_j * rho + ru_j)
266  for (int j = 0; j < m_spacedim; ++j)
267  {
268  // d u0_i / d x_j
269  m_fields[0]->PhysDeriv(MultiRegions::DirCartesianMap[j], u0[i],
270  grad);
271  // u0_j * rho + ru_j
272  Vmath::Vvtvp(nq, u0[j], 1, rho, 1, ru[j], 1, tmp1, 1);
273  // du0_i/dx_j * (u0_j * rho + ru_j)
274  Vmath::Vvtvp(nq, grad, 1, tmp1, 1, linTerm[m_iu + i], 1,
275  linTerm[m_iu + i], 1);
276  }
277  }
278 
280  for (int i = 0; i < m_spacedim + 2; ++i)
281  {
282  if (i == 1)
283  {
284  // skip rho
285  continue;
286  }
287 
288  m_fields[0]->FwdTrans(linTerm[i], tmpC);
289  m_fields[0]->BwdTrans(tmpC, linTerm[i]);
290 
291  Vmath::Vadd(nq, outarray[i], 1, linTerm[i], 1, outarray[i], 1);
292  }
293 }
294 
295 /**
296  * @brief Outflow characteristic boundary conditions for compressible
297  * flow problems.
298  */
299 void LEE::v_RiemannInvariantBC(int bcRegion, int cnt,
302  Array<OneD, Array<OneD, NekDouble>> &physarray)
303 {
304  int id1, id2, nBCEdgePts;
305  int nVariables = physarray.size();
306 
307  const Array<OneD, const int> &traceBndMap = m_fields[0]->GetTraceBndMap();
308 
309  int eMax = m_fields[0]->GetBndCondExpansions()[bcRegion]->GetExpSize();
310 
311  for (int e = 0; e < eMax; ++e)
312  {
313  nBCEdgePts = m_fields[0]
314  ->GetBndCondExpansions()[bcRegion]
315  ->GetExp(e)
316  ->GetTotPoints();
317  id1 = m_fields[0]->GetBndCondExpansions()[bcRegion]->GetPhys_Offset(e);
318  id2 = m_fields[0]->GetTrace()->GetPhys_Offset(traceBndMap[cnt + e]);
319 
320  // Calculate (v.n)
321  Array<OneD, NekDouble> RVn(nBCEdgePts, 0.0);
322  for (int i = 0; i < m_spacedim; ++i)
323  {
324  Vmath::Vvtvp(nBCEdgePts, &Fwd[m_iu + i][id2], 1,
325  &m_traceNormals[i][id2], 1, &RVn[0], 1, &RVn[0], 1);
326  }
327 
328  // Calculate (v0.n)
329  Array<OneD, NekDouble> RVn0(nBCEdgePts, 0.0);
330  for (int i = 0; i < m_spacedim; ++i)
331  {
332  Vmath::Vvtvp(nBCEdgePts, &BfFwd[2 + i][id2], 1,
333  &m_traceNormals[i][id2], 1, &RVn0[0], 1, &RVn0[0], 1);
334  }
335 
336  for (int i = 0; i < nBCEdgePts; ++i)
337  {
338  NekDouble c = sqrt(BfFwd[0][id2 + i]);
339 
340  NekDouble h1, h4, h5;
341 
342  if (RVn0[i] > 0)
343  {
344  // rho - p / c^2
345  h1 = Fwd[m_irho][id2 + i] - Fwd[m_ip][id2 + i] / (c * c);
346  }
347  else
348  {
349  h1 = 0.0;
350  }
351 
352  if (RVn0[i] - c > 0)
353  {
354  // ru / 2 - p / (2*c)
355  h4 = RVn[i] / 2 - Fwd[m_ip][id2 + i] / (2 * c);
356  }
357  else
358  {
359  h4 = 0.0;
360  }
361 
362  if (RVn0[i] + c > 0)
363  {
364  // ru / 2 + p / (2*c)
365  h5 = RVn[i] / 2 + Fwd[m_ip][id2 + i] / (2 * c);
366  }
367  else
368  {
369  h5 = 0.0;
370  }
371 
372  // compute conservative variables
373  // p = c0*(h5-h4)
374  // rho = h1 + (h5-h4)/c0
375  // ru = h4+h5
376  Fwd[m_ip][id2 + i] = c * (h5 - h4);
377  Fwd[m_irho][id2 + i] = h1 + (h5 - h4) / c;
378  NekDouble RVnNew = h4 + h5;
379 
380  // adjust velocity pert. according to new value
381  // here we just omit the wall parallel velocity components, i.e
382  // setting them to zero. This is equivalent to setting the two
383  // vorticity characteristics h2 and h3 to zero. Mathematically,
384  // this is only legitimate for incoming characteristics. However,
385  // as h2 and h3 are convected by the flow, the value we precribe at
386  // an the boundary for putgoing characteristics does not matter.
387  // This implementation saves a few operations and is more robust
388  // for mixed in/outflow boundaries and at the boundaries edges.
389  for (int j = 0; j < m_spacedim; ++j)
390  {
391  Fwd[m_iu + j][id2 + i] = RVnNew * m_traceNormals[j][id2 + i];
392  }
393  }
394 
395  // Copy boundary adjusted values into the boundary expansion
396  for (int i = 0; i < nVariables; ++i)
397  {
398  Vmath::Vcopy(nBCEdgePts, &Fwd[i][id2], 1,
399  &(m_fields[i]
400  ->GetBndCondExpansions()[bcRegion]
401  ->UpdatePhys())[id1],
402  1);
403  }
404  }
405 }
406 
407 } // namespace Nektar
#define ASSERTL0(condition, msg)
Definition: ErrorUtil.hpp:216
#define ASSERTL1(condition, msg)
Assert Level 1 – Debugging which is used whether in FULLDEBUG or DEBUG compilation mode....
Definition: ErrorUtil.hpp:250
const Array< OneD, const Array< OneD, NekDouble > > & GetVecLocs()
Get the locations of the components of the directed fields within the fields array.
const Array< OneD, const Array< OneD, NekDouble > > & GetNormals()
Get the normal vectors.
std::vector< std::string > m_bfNames
bool m_conservative
we are dealing with a conservative formualtion
void DoOdeProjection(const Array< OneD, const Array< OneD, NekDouble >> &inarray, Array< OneD, Array< OneD, NekDouble >> &outarray, const NekDouble time)
Compute the projection and call the method for imposing the boundary conditions in case of discontinu...
SolverUtils::AdvectionSharedPtr m_advection
void DoOdeRhs(const Array< OneD, const Array< OneD, NekDouble >> &inarray, Array< OneD, Array< OneD, NekDouble >> &outarray, const NekDouble time)
Compute the right-hand side.
virtual void v_InitObject()
Initialization object for the AcousticSystem class.
int m_ip
indices of the fields
Array< OneD, Array< OneD, NekDouble > > m_bfFwdBwd
Array< OneD, Array< OneD, NekDouble > > m_bf
const Array< OneD, const Array< OneD, NekDouble > > & GetBasefieldFwdBwd()
Get the baseflow field.
SolverUtils::RiemannSolverSharedPtr m_riemannSolver
virtual void v_InitObject()
Initialization object for the LEE class.
Definition: LEE.cpp:61
virtual ~LEE()
Destructor.
Definition: LEE.cpp:125
virtual void v_RiemannInvariantBC(int bcRegion, int cnt, Array< OneD, Array< OneD, NekDouble >> &Fwd, Array< OneD, Array< OneD, NekDouble >> &BfFwd, Array< OneD, Array< OneD, NekDouble >> &physarray)
Outflow characteristic boundary conditions for compressible flow problems.
Definition: LEE.cpp:299
virtual void v_GetFluxVector(const Array< OneD, Array< OneD, NekDouble >> &physfield, Array< OneD, Array< OneD, Array< OneD, NekDouble >>> &flux)
Return the flux vector for the LEE equations.
Definition: LEE.cpp:135
virtual void v_AddLinTerm(const Array< OneD, const Array< OneD, NekDouble >> &inarray, Array< OneD, Array< OneD, NekDouble >> &outarray)
Definition: LEE.cpp:193
tKey RegisterCreatorFunction(tKey idKey, CreatorFunction classCreator, std::string pDesc="")
Register a class with the factory.
Definition: NekFactory.hpp:200
tBaseSharedPtr CreateInstance(tKey idKey, tParam... args)
Create an instance of the class referred to by idKey.
Definition: NekFactory.hpp:145
void DefineProjection(FuncPointerT func, ObjectPointerT obj)
void DefineOdeRhs(FuncPointerT func, ObjectPointerT obj)
int m_spacedim
Spatial dimension (>= expansion dim).
SOLVER_UTILS_EXPORT int GetTraceNpoints()
NekDouble m_time
Current time of simulation.
Array< OneD, MultiRegions::ExpListSharedPtr > m_fields
Array holding all dependent variables.
LibUtilities::SessionReaderSharedPtr m_session
The session reader.
Array< OneD, Array< OneD, NekDouble > > m_traceNormals
Array holding trace normals for DG simulations in the forwards direction.
SOLVER_UTILS_EXPORT int GetNcoeffs()
SOLVER_UTILS_EXPORT SessionFunctionSharedPtr GetFunction(std::string name, const MultiRegions::ExpListSharedPtr &field=MultiRegions::NullExpListSharedPtr, bool cache=false)
Get a SessionFunction by name.
SOLVER_UTILS_EXPORT int GetTotPoints()
Base class for unsteady solvers.
LibUtilities::TimeIntegrationSchemeOperators m_ode
The time integration scheme operators to use.
bool m_explicitAdvection
Indicates if explicit or implicit treatment of advection is used.
std::shared_ptr< SessionReader > SessionReaderSharedPtr
MultiRegions::Direction const DirCartesianMap[]
Definition: ExpList.h:90
AdvectionFactory & GetAdvectionFactory()
Gets the factory for initialising advection objects.
Definition: Advection.cpp:47
EquationSystemFactory & GetEquationSystemFactory()
RiemannSolverFactory & GetRiemannSolverFactory()
std::shared_ptr< MeshGraph > MeshGraphSharedPtr
Definition: MeshGraph.h:174
The above copyright notice and this permission notice shall be included.
Definition: CoupledSolver.h:1
double NekDouble
void Vmul(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Multiply vector z = x*y.
Definition: Vmath.cpp:192
void Vvtvp(int n, const T *w, const int incw, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
vvtvp (vector times vector plus vector): z = w*x + y
Definition: Vmath.cpp:513
void Vadd(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Add vector z = x+y.
Definition: Vmath.cpp:322
void Vvtvm(int n, const T *w, const int incw, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
vvtvm (vector times vector plus vector): z = w*x - y
Definition: Vmath.cpp:541
void Vdiv(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Multiply vector z = x/y.
Definition: Vmath.cpp:257
void Zero(int n, T *x, const int incx)
Zero vector.
Definition: Vmath.cpp:436
void Sadd(int n, const T alpha, const T *x, const int incx, T *y, const int incy)
Add vector y = alpha - x.
Definition: Vmath.cpp:341
void Vvtvvtp(int n, const T *v, int incv, const T *w, int incw, const T *x, int incx, const T *y, int incy, T *z, int incz)
vvtvvtp (vector times vector plus vector times vector):
Definition: Vmath.cpp:625
void Vcopy(int n, const T *x, const int incx, T *y, const int incy)
Definition: Vmath.cpp:1199
scalarT< T > sqrt(scalarT< T > in)
Definition: scalar.hpp:267