38 #include <boost/core/ignore_unused.hpp>
39 #include <boost/algorithm/string.hpp>
46 #include <boost/math/special_functions/spherical_harmonic.hpp>
54 RegisterCreatorFunction(
"MMFDiffusion",
56 "MMFDiffusion equation.");
58 MMFDiffusion::MMFDiffusion(
89 int shapedim =
m_fields[0]->GetShapeDimension();
91 for(
int j=0; j<shapedim; ++j)
101 if(
m_session->DefinesSolverInfo(
"TESTTYPE"))
103 std::string TestTypeStr =
m_session->GetSolverInfo(
"TESTTYPE");
119 if(
m_session->DefinesSolverInfo(
"INITWAVETYPE"))
121 std::string InitWaveTypeStr =
m_session->GetSolverInfo(
"INITWAVETYPE");
155 for (
int k=0; k<MFdim; ++k)
212 int nvariables = inarray.size();
223 for (
int n = 1; n < nvariables; ++n)
235 for (
int i = 0; i < nvariables; ++i)
282 for(
int k=0; k<nq; k++)
298 for(
int k=0; k<nq; k++)
321 Vmath::Svtvp(nq,m_a,&inarray[0][0],1,&temp[0],1,&temp[0],1);
322 Vmath::Svtvp(nq,m_b,&inarray[1][0],1,&temp[0],1,&outarray[0][0],1);
325 Vmath::Svtvp(nq,m_c,&inarray[0][0],1,&temp[0],1,&temp[0],1);
326 Vmath::Svtvp(nq,m_d,&inarray[1][0],1,&temp[0],1,&outarray[1][0],1);
339 Vmath::Vmul(nq,&inarray[0][0],1,&inarray[0][0],1,&cube[0],1);
340 Vmath::Vmul(nq,&inarray[1][0],1,&cube[0],1,&cube[0],1);
345 Vmath::Svtvp(nq,coeff,&inarray[0][0],1,&cube[0],1,&tmp[0],1);
346 Vmath::Vadd(nq,&Aonevec[0],1,&tmp[0],1,&outarray[0][0],1);
349 Vmath::Svtvm(nq,B,&inarray[0][0],1,&cube[0],1,&outarray[1][0],1);
366 Vmath::Smul(nq, -1.0*c1, inarray[0], 1, outarray[0], 1);
368 Vmath::Vmul(nq, tmp, 1, inarray[0], 1, outarray[0], 1);
370 Vmath::Vmul(nq, tmp, 1, outarray[0], 1, outarray[0], 1);
373 Vmath::Vadd(nq, tmp, 1, outarray[0], 1, outarray[0], 1);
377 Vmath::Svtvp(nq, -1.0*d, inarray[1], 1, inarray[0], 1, outarray[1], 1);
378 Vmath::Smul(nq, b, outarray[1], 1, outarray[1], 1);
393 Vmath::Smul(nq, -1.0*c1, inarray[0], 1, outarray[0], 1);
395 Vmath::Vmul(nq, tmp, 1, outarray[0], 1, outarray[0], 1);
397 Vmath::Vmul(nq, tmp, 1, outarray[0], 1, outarray[0], 1);
399 Vmath::Vmul(nq, inarray[0], 1, inarray[1], 1, tmp, 1);
401 Vmath::Vadd(nq, tmp, 1, outarray[0], 1, outarray[0], 1);
404 Vmath::Svtvp(nq, -1.0*d, inarray[1], 1, inarray[0], 1, outarray[1], 1);
405 Vmath::Smul(nq, b, outarray[1], 1, outarray[1], 1);
422 Vmath::Smul(nq, -1.0*c1, inarray[0], 1, outarray[0], 1);
424 Vmath::Vmul(nq, tmp, 1, outarray[0], 1, outarray[0], 1);
426 Vmath::Vmul(nq, tmp, 1, outarray[0], 1, outarray[0], 1);
428 Vmath::Vmul(nq, inarray[0], 1, inarray[1], 1, tmp, 1);
430 Vmath::Vadd(nq, tmp, 1, outarray[0], 1, outarray[0], 1);
434 Vmath::Smul(nq, mu1, inarray[1], 1, outarray[1], 1);
436 Vmath::Vdiv(nq, outarray[1], 1, tmp, 1, outarray[1], 1);
437 Vmath::Sadd(nq, c0, outarray[1], 1, outarray[1], 1);
445 Vmath::Vmul(nq, tmp, 1, outarray[1], 1, outarray[1], 1);
459 bool dumpInitialConditions,
462 boost::ignore_unused(domain);
527 for(
int i = 0; i <
m_fields.size(); ++i)
533 if(dumpInitialConditions)
554 for (
int k=0; k<nq; k++)
574 for (
int k=0; k<nq; k++)
591 std::complex<double> Spericharmonic, delta_n, temp;
592 std::complex<double> varphi0, varphi1;
593 std::complex<double> B_mn, D_mn;
615 for (i = 0; i < Maxn; ++i)
621 Ainit[5][0] = -0.5839;
622 Ainit[5][1] = -0.8436;
623 Ainit[5][2] = -0.4764;
624 Ainit[5][3] = 0.6475;
625 Ainit[5][4] = 0.1886;
626 Ainit[5][5] = 0.8709;
627 Ainit[5][6] = -0.8338;
628 Ainit[5][7] = 0.1795;
629 Ainit[5][8] = -0.7873;
630 Ainit[5][9] = 0.8842;
631 Ainit[5][10] = 0.2943;
633 Binit[5][0] = -0.6263;
634 Binit[5][1] = 0.9803;
635 Binit[5][2] = 0.7222;
636 Binit[5][3] = 0.5945;
637 Binit[5][4] = 0.6026;
638 Binit[5][5] = -0.2076;
639 Binit[5][6] = 0.4556;
640 Binit[5][7] = 0.6024;
641 Binit[5][8] = 0.9695;
642 Binit[5][9] = -0.4936;
643 Binit[5][10] = 0.1098;
652 for (
int i = 0; i < nq; ++i)
654 radius =
sqrt(x[i]*x[i] + y[i]*y[i] + z[i]*z[i]) ;
657 theta = asin( z[i]/radius ) + 0.5*
m_pi;
660 phi = atan2( y[i], x[i] ) +
m_pi;
662 varphi0 = 0.0*varphi0;
663 varphi1 = 0.0*varphi1;
664 for (n = 0; n < Maxn; ++n)
667 a_n = m_a -
m_mu*( n*(n+1)/radius/radius );
668 d_n = m_d - m_nu*( n*(n+1)/radius/radius );
670 gamma_n = 0.5*( a_n + d_n );
672 temp = ( a_n + d_n )*( a_n + d_n ) - 4.0*( a_n*d_n - m_b*m_c );
673 delta_n = 0.5*
sqrt( temp );
675 for (m = -n; m <=n; ++m)
678 A_mn = Ainit[n][ind];
679 C_mn = Binit[n][ind];
681 B_mn = ( (a_n - gamma_n)*Ainit[n][ind] + m_b*Binit[n][ind])/delta_n;
682 D_mn = ( m_c*Ainit[n][ind] + (d_n - gamma_n)*Binit[n][ind])/delta_n;
684 Spericharmonic = boost::math::spherical_harmonic(n, m, theta, phi);
685 varphi0 += exp(gamma_n*time)*(A_mn*cosh(delta_n*time) + B_mn*sinh(delta_n*time))*Spericharmonic;
686 varphi1 += exp(gamma_n*time)*(C_mn*cosh(delta_n*time) + D_mn*sinh(delta_n*time))*Spericharmonic;
690 u[i] = varphi0.real();
691 v[i] = varphi1.real();
729 for (
int i=0; i<nq; i++)
739 outarray[i] = 1.0/( 1.0 + exp( ( xp - radiusofinit)/frontstiff ) );
751 outarray[i] = 1.0/( 1.0 + exp( (
sqrt(xp*xp) - radiusofinit)/frontstiff ) ) + 1.0/( 1.0 + exp( (
sqrt(xp2*xp2) - radiusofinit)/frontstiff ) );
763 outarray[i] =1.0/( 1.0 + exp( ( xp - radiusofinit)/frontstiff ) );
775 outarray[i] = 1.0/( 1.0 + exp( (
sqrt(xp*xp+yp*yp)/bs - radiusofinit)/frontstiff ) );
788 rad =
sqrt(xloc*xloc + yloc*yloc + zloc*zloc);
790 xloc = xloc/radiusofinit;
791 yloc = yloc/radiusofinit;
792 zloc = zloc/radiusofinit;
796 outarray[i] = exp( -(1.0/2.0)*( xloc*xloc + yloc*yloc + zloc*zloc) ) ;
812 outarray[i] = (1.0/(1.0+exp(2.0*yp)))*(1.0/(1.0+exp(-2.0*xp)))*( 1.0/( 1.0 + exp( ( xp - radiusofinit)/frontstiff ) ) );
880 int main(
int argc,
char *argv[])
884 std::string vDriverModule;
890 session = LibUtilities::SessionReader::CreateInstance(argc, argv);
893 graph = SpatialDomains::MeshGraph::Read(session);
896 session->LoadSolverInfo(
"Driver", vDriverModule,
"Standard");
905 catch (
const std::runtime_error& e)
909 catch (
const std::string& eStr)
911 std::cout <<
"Error: " << eStr << std::endl;
int main(int argc, char *argv[])
tBaseSharedPtr CreateInstance(tKey idKey, tParam... args)
Create an instance of the class referred to by idKey.
void DefineOdeRhs(FuncPointerT func, ObjectPointerT obj)
void DefineImplicitSolve(FuncPointerT func, ObjectPointerT obj)
StdRegions::VarCoeffMap m_varcoeff
Variable diffusivity.
virtual ~MMFDiffusion()
Desctructor.
void Morphogenesis(const NekDouble time, unsigned int field, Array< OneD, NekDouble > &outfield)
InitWaveType m_InitWaveType
Array< OneD, NekDouble > m_epsu
void TestCubeProblem(const NekDouble time, Array< OneD, NekDouble > &outfield)
virtual void v_InitObject()
Init object for UnsteadySystem class.
Array< OneD, NekDouble > m_epsilon
void DoOdeRhs(const Array< OneD, const Array< OneD, NekDouble > > &inarray, Array< OneD, Array< OneD, NekDouble > > &outarray, const NekDouble time)
Computes the reaction terms and .
virtual void v_GenerateSummary(SolverUtils::SummaryList &s)
Prints a summary of the model parameters.
Array< OneD, NekDouble > PlanePhiWave()
void DoImplicitSolve(const Array< OneD, const Array< OneD, NekDouble > > &inarray, Array< OneD, Array< OneD, NekDouble > > &outarray, NekDouble time, NekDouble lambda)
Solve for the diffusion term.
void TestPlaneProblem(const NekDouble time, Array< OneD, NekDouble > &outfield)
virtual void v_EvaluateExactSolution(unsigned int field, Array< OneD, NekDouble > &outfield, const NekDouble time)
virtual void v_SetInitialConditions(NekDouble initialtime, bool dumpInitialConditions, const int domain)
Sets a custom initial condition.
int m_spacedim
Spatial dimension (>= expansion dim).
virtual SOLVER_UTILS_EXPORT void v_SetInitialConditions(NekDouble initialtime=0.0, bool dumpInitialConditions=true, const int domain=0)
Array< OneD, MultiRegions::ExpListSharedPtr > m_fields
Array holding all dependent variables.
virtual SOLVER_UTILS_EXPORT void v_EvaluateExactSolution(unsigned int field, Array< OneD, NekDouble > &outfield, const NekDouble time)
SOLVER_UTILS_EXPORT void WriteFld(const std::string &outname)
Write field data to the given filename.
std::string m_sessionName
Name of the session.
LibUtilities::SessionReaderSharedPtr m_session
The session reader.
SOLVER_UTILS_EXPORT void SetBoundaryConditions(NekDouble time)
Evaluates the boundary conditions at the given time.
SOLVER_UTILS_EXPORT int GetTotPoints()
A base class for PDEs which include an advection component.
Array< OneD, Array< OneD, NekDouble > > m_DivMF
Array< OneD, Array< OneD, NekDouble > > m_movingframes
SOLVER_UTILS_EXPORT void MMFInitObject(const Array< OneD, const Array< OneD, NekDouble >> &Anisotropy, const int TangentXelem=-1)
virtual SOLVER_UTILS_EXPORT void v_GenerateSummary(SummaryList &s)
Print a summary of time stepping parameters.
Base class for unsteady solvers.
LibUtilities::TimeIntegrationSchemeOperators m_ode
The time integration scheme operators to use.
bool m_explicitDiffusion
Indicates if explicit or implicit treatment of diffusion is used.
virtual SOLVER_UTILS_EXPORT void v_InitObject()
Init object for UnsteadySystem class.
static NekDouble rad(NekDouble x, NekDouble y)
std::shared_ptr< SessionReader > SessionReaderSharedPtr
std::shared_ptr< Driver > DriverSharedPtr
A shared pointer to a Driver object.
std::vector< std::pair< std::string, std::string > > SummaryList
DriverFactory & GetDriverFactory()
EquationSystemFactory & GetEquationSystemFactory()
void AddSummaryItem(SummaryList &l, const std::string &name, const std::string &value)
Adds a summary item to the summary info list.
std::shared_ptr< MeshGraph > MeshGraphSharedPtr
std::map< ConstFactorType, NekDouble > ConstFactorMap
The above copyright notice and this permission notice shall be included.
const char *const InitWaveTypeMap[]
@ SIZE_TestType
Length of enum list.
const char *const TestTypeMap[]
void Vmul(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Multiply vector z = x*y.
void Svtvp(int n, const T alpha, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
svtvp (scalar times vector plus vector): z = alpha*x + y
void Neg(int n, T *x, const int incx)
Negate x = -x.
T Vmin(int n, const T *x, const int incx)
Return the minimum element in x - called vmin to avoid conflict with min.
void Vvtvp(int n, const T *w, const int incw, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
vvtvp (vector times vector plus vector): z = w*x + y
void Svtvm(int n, const T alpha, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
svtvp (scalar times vector plus vector): z = alpha*x - y
void Vadd(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Add vector z = x+y.
void Smul(int n, const T alpha, const T *x, const int incx, T *y, const int incy)
Scalar multiply y = alpha*x.
void Vdiv(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Multiply vector z = x/y.
void Zero(int n, T *x, const int incx)
Zero vector.
void Fill(int n, const T alpha, T *x, const int incx)
Fill a vector with a constant value.
void Sadd(int n, const T alpha, const T *x, const int incx, T *y, const int incy)
Add vector y = alpha - x.
T Vmax(int n, const T *x, const int incx)
Return the maximum element in x – called vmax to avoid conflict with max.
void Vcopy(int n, const T *x, const int incx, T *y, const int incy)
scalarT< T > sqrt(scalarT< T > in)