43 std::string NavierStokesAdvection::navierStokesAdvectionTypeLookupIds[2] = {
44 LibUtilities::SessionReader::RegisterEnumValue(
"SPECTRALHPDEALIASING",
46 LibUtilities::SessionReader::RegisterEnumValue(
"SPECTRALHPDEALIASING",
59 NavierStokesAdvection::NavierStokesAdvection():
78 pSession->MatchSolverInfo(
"ModeType",
"SingleMode",
m_SingleMode,
false);
79 pSession->MatchSolverInfo(
"ModeType",
"HalfMode",
m_HalfMode,
false);
86 const int nConvectiveFields,
95 int nqtot = fields[0]->GetTotPoints();
96 ASSERTL1(nConvectiveFields == inarray.size(),
"Number of convective fields and Inarray are not compatible");
99 int ndim = advVel.size();
106 for(
int i = 0; i < ndim; ++i)
112 fields[i]->HomogeneousBwdTrans(advVel[i],velocity[i]);
116 velocity[i] = advVel[i];
120 int nPointsTot = fields[0]->GetNpoints();
128 nPointsTot = fields[0]->Get1DScaledTotPoints(OneDptscale);
135 for(
int i = 0; i < ndim; ++i)
140 fields[0]->PhysInterp1DScaled(OneDptscale,velocity[i],AdvVel[i]);
147 for(
int i = 0; i < ndim; ++i)
149 AdvVel[i] = velocity[i];
160 for(
int n = 0; n < nConvectiveFields; ++n)
162 fields[0]->PhysDeriv(inarray[n],grad0);
166 fields[0]->PhysInterp1DScaled(OneDptscale,grad0,wkSp);
167 Vmath::Vmul (nPointsTot,wkSp,1,AdvVel[0],1,Outarray,1);
170 fields[0]->PhysGalerkinProjection1DScaled(OneDptscale,Outarray,outarray[n]);
176 Vmath::Vmul(nPointsTot,grad0,1,AdvVel[0],1,outarray[n],1);
183 for(
int n = 0; n < nConvectiveFields; ++n)
185 fields[0]->PhysDeriv(inarray[n],grad0,grad1);
190 fields[0]->PhysInterp1DScaled(OneDptscale,grad0,wkSp);
191 Vmath::Vmul (nPointsTot,wkSp,1,AdvVel[0],1,Outarray,1);
193 fields[0]->PhysInterp1DScaled(OneDptscale,grad1,wkSp);
196 Vmath::Vvtvp(nPointsTot,wkSp,1,AdvVel[1],1,Outarray,1,Outarray,1);
199 fields[0]->PhysGalerkinProjection1DScaled(OneDptscale,Outarray,outarray[n]);
205 Vmath::Vmul (nPointsTot,grad0,1,AdvVel[0],1,outarray[n],1);
206 Vmath::Vvtvp(nPointsTot,grad1,1,AdvVel[1],1,outarray[n],1,outarray[n],1);
216 for (
int i = 0; i < ndim; i++)
220 for (
int i = 0; i < ndim*nConvectiveFields; i++)
224 for (
int i = 0; i < nConvectiveFields; i++)
229 for (
int n = 0; n < nConvectiveFields; n++)
231 fields[0]->PhysDeriv(inarray[n],grad[0],grad[1],grad[2]);
232 for (
int i = 0; i < ndim; i++)
235 fields[0]->PhysInterp1DScaled(OneDptscale,grad[i],
236 gradScaled[n*ndim+i]);
242 fields[0]->DealiasedDotProd(AdvVel,gradScaled,Outarray);
245 for (
int n = 0; n < nConvectiveFields; n++)
247 fields[0]->PhysGalerkinProjection1DScaled(OneDptscale,
248 Outarray[n],outarray[n]);
257 for (
int i = 0; i < ndim*nConvectiveFields; i++)
261 for (
int i = 0; i < nConvectiveFields; i++)
266 for (
int n = 0; n < nConvectiveFields; n++)
268 fields[0]->PhysDeriv(inarray[n],grad[n*ndim+0],
273 fields[0]->DealiasedDotProd(AdvVel,grad,outarray);
281 for(
int n = 0; n < nConvectiveFields; ++n)
283 if (fields[0]->GetWaveSpace() ==
true &&
286 fields[0]->HomogeneousBwdTrans(inarray[n],tmp);
287 fields[0]->PhysDeriv(tmp,grad0,grad1);
292 fields[0]->HomogeneousBwdTrans(outarray[n],grad2);
294 else if (fields[0]->GetWaveSpace() ==
true &&
297 fields[0]->HomogeneousBwdTrans(inarray[n],tmp);
298 fields[0]->PhysDeriv(tmp,grad0);
302 fields[0]->HomogeneousBwdTrans(outarray[n],grad1);
306 fields[0]->HomogeneousBwdTrans(outarray[n],grad2);
310 fields[0]->PhysDeriv(inarray[n],grad0,grad1,grad2);
316 fields[0]->PhysInterp1DScaled(OneDptscale,grad0,wkSp);
319 Vmath::Vmul(nPointsTot,wkSp,1,AdvVel[0],1,Outarray,1);
322 fields[0]->PhysInterp1DScaled(OneDptscale,grad1,wkSp);
329 fields[0]->PhysInterp1DScaled(OneDptscale,grad2,wkSp);
335 fields[0]->PhysGalerkinProjection1DScaled(OneDptscale,
336 Outarray,outarray[n]);
342 Vmath::Vmul(nPointsTot,grad0,1,AdvVel[0],1,outarray[n],1);
343 Vmath::Vvtvp(nPointsTot,grad1,1,AdvVel[1],1,outarray[n],1,
345 Vmath::Vvtvp(nPointsTot,grad2,1,AdvVel[2],1,outarray[n],1,
349 if(fields[0]->GetWaveSpace() ==
true)
351 fields[0]->HomogeneousFwdTrans(outarray[n],outarray[n]);
357 ASSERTL0(
false,
"dimension unknown");
360 for(
int n = 0; n < nConvectiveFields; ++n)
#define ASSERTL0(condition, msg)
#define ASSERTL1(condition, msg)
Assert Level 1 – Debugging which is used whether in FULLDEBUG or DEBUG compilation mode....
tKey RegisterCreatorFunction(tKey idKey, CreatorFunction classCreator, std::string pDesc="")
Register a class with the factory.
void AccumulateRegion(std::string, int iolevel=0)
Accumulate elapsed time for a region.
virtual void v_InitObject(LibUtilities::SessionReaderSharedPtr pSession, Array< OneD, MultiRegions::ExpListSharedPtr > pFields)
Initialises the advection object.
virtual void v_Advect(const int nConvectiveFields, const Array< OneD, MultiRegions::ExpListSharedPtr > &fields, const Array< OneD, Array< OneD, NekDouble > > &advVel, const Array< OneD, Array< OneD, NekDouble > > &inarray, Array< OneD, Array< OneD, NekDouble > > &outarray, const NekDouble &time, const Array< OneD, Array< OneD, NekDouble > > &pFwd=NullNekDoubleArrayOfArray, const Array< OneD, Array< OneD, NekDouble > > &pBwd=NullNekDoubleArrayOfArray)
Advects a vector field.
bool m_homogen_dealiasing
virtual ~NavierStokesAdvection()
An abstract base class encapsulating the concept of advection of a vector field.
virtual SOLVER_UTILS_EXPORT void v_InitObject(LibUtilities::SessionReaderSharedPtr pSession, Array< OneD, MultiRegions::ExpListSharedPtr > pFields)
Initialises the advection object.
std::shared_ptr< SessionReader > SessionReaderSharedPtr
MultiRegions::Direction const DirCartesianMap[]
AdvectionFactory & GetAdvectionFactory()
Gets the factory for initialising advection objects.
The above copyright notice and this permission notice shall be included.
void Vmul(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Multiply vector z = x*y.
void Neg(int n, T *x, const int incx)
Negate x = -x.
void Vvtvp(int n, const T *w, const int incw, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
vvtvp (vector times vector plus vector): z = w*x + y