Nektar++
PressureOutflowBC.cpp
Go to the documentation of this file.
1 ///////////////////////////////////////////////////////////////////////////////
2 //
3 // File: PressureOutflowBC.cpp
4 //
5 // For more information, please see: http://www.nektar.info
6 //
7 // The MIT License
8 //
9 // Copyright (c) 2006 Division of Applied Mathematics, Brown University (USA),
10 // Department of Aeronautics, Imperial College London (UK), and Scientific
11 // Computing and Imaging Institute, University of Utah (USA).
12 //
13 // Permission is hereby granted, free of charge, to any person obtaining a
14 // copy of this software and associated documentation files (the "Software"),
15 // to deal in the Software without restriction, including without limitation
16 // the rights to use, copy, modify, merge, publish, distribute, sublicense,
17 // and/or sell copies of the Software, and to permit persons to whom the
18 // Software is furnished to do so, subject to the following conditions:
19 //
20 // The above copyright notice and this permission notice shall be included
21 // in all copies or substantial portions of the Software.
22 //
23 // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
24 // OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
25 // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
26 // THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
27 // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
28 // FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
29 // DEALINGS IN THE SOFTWARE.
30 //
31 // Description: Pressure outflow boundary condition
32 //
33 ///////////////////////////////////////////////////////////////////////////////
34 
35 #include <boost/core/ignore_unused.hpp>
36 
37 #include "PressureOutflowBC.h"
38 
39 using namespace std;
40 
41 namespace Nektar
42 {
43 
44 std::string PressureOutflowBC::className = GetCFSBndCondFactory().
45  RegisterCreatorFunction("PressureOutflow",
46  PressureOutflowBC::create,
47  "Pressure outflow boundary condition.");
48 
49 PressureOutflowBC::PressureOutflowBC(
52  const Array<OneD, Array<OneD, NekDouble> >& pTraceNormals,
53  const int pSpaceDim,
54  const int bcRegion,
55  const int cnt)
56  : CFSBndCond(pSession, pFields, pTraceNormals, pSpaceDim, bcRegion, cnt)
57 {
58  int numBCPts = m_fields[0]->
59  GetBndCondExpansions()[m_bcRegion]->GetNpoints();
61 
62  // Get Pressure
63  Vmath::Vcopy(numBCPts,
64  m_fields[m_spacedim+1]->GetBndCondExpansions()[m_bcRegion]->GetPhys(), 1,
66 }
67 
70  Array<OneD, Array<OneD, NekDouble> > &physarray,
71  const NekDouble &time)
72 {
73  boost::ignore_unused(time);
74 
75  int i, j;
76  int nTracePts = m_fields[0]->GetTrace()->GetNpoints();
77  int nVariables = physarray.size();
78  int nDimensions = m_spacedim;
79 
80  const Array<OneD, const int> &traceBndMap = m_fields[0]->GetTraceBndMap();
81 
82  // Computing the normal velocity for characteristics coming
83  // from inside the computational domain
84  Array<OneD, NekDouble > Vn (nTracePts, 0.0);
85  Array<OneD, NekDouble > Vel(nTracePts, 0.0);
86  for (i = 0; i < nDimensions; ++i)
87  {
88  Vmath::Vdiv(nTracePts, Fwd[i+1], 1, Fwd[0], 1, Vel, 1);
89  Vmath::Vvtvp(nTracePts, m_traceNormals[i], 1, Vel, 1, Vn, 1, Vn, 1);
90  }
91 
92  // Computing the absolute value of the velocity in order to compute the
93  // Mach number to decide whether supersonic or subsonic
94  Array<OneD, NekDouble > absVel(nTracePts, 0.0);
95  m_varConv->GetAbsoluteVelocity(Fwd, absVel);
96 
97  // Get speed of sound
98  Array<OneD, NekDouble > soundSpeed(nTracePts);
99  m_varConv->GetSoundSpeed(Fwd, soundSpeed);
100 
101  // Get Mach
102  Array<OneD, NekDouble > Mach(nTracePts, 0.0);
103  Vmath::Vdiv(nTracePts, Vn, 1, soundSpeed, 1, Mach, 1);
104  Vmath::Vabs(nTracePts, Mach, 1, Mach, 1);
105 
106  // Auxiliary variables
107  int e, id1, id2, npts, pnt;
108  NekDouble rhoeb;
109 
110  // Loop on the m_bcRegions
111  for (e = 0; e < m_fields[0]->GetBndCondExpansions()[m_bcRegion]->
112  GetExpSize(); ++e)
113  {
114  npts = m_fields[0]->GetBndCondExpansions()[m_bcRegion]->
115  GetExp(e)->GetTotPoints();
116  id1 = m_fields[0]->GetBndCondExpansions()[m_bcRegion]->
117  GetPhys_Offset(e);
118  id2 = m_fields[0]->GetTrace()->GetPhys_Offset(traceBndMap[m_offset+e]);
119 
120  // Get internal energy
122  Array<OneD, NekDouble> rho (npts, Fwd[0]+id2);
123  Array<OneD, NekDouble> Ei(npts);
124  m_varConv->GetEFromRhoP(rho, pressure, Ei);
125 
126  // Loop on points of m_bcRegion 'e'
127  for (i = 0; i < npts; i++)
128  {
129  pnt = id2+i;
130 
131  // Subsonic flows
132  if (Mach[pnt] < 0.99)
133  {
134  // Kinetic energy calculation
135  NekDouble Ek = 0.0;
136  for (j = 1; j < nVariables-1; ++j)
137  {
138  Ek += 0.5 * (Fwd[j][pnt] * Fwd[j][pnt]) / Fwd[0][pnt];
139  }
140 
141  rhoeb = Fwd[0][pnt] * Ei[i] + Ek;
142 
143  // Partial extrapolation for subsonic cases
144  for (j = 0; j < nVariables-1; ++j)
145  {
146  (m_fields[j]->GetBndCondExpansions()[m_bcRegion]->
147  UpdatePhys())[id1+i] = Fwd[j][pnt];
148  }
149 
150  (m_fields[nVariables-1]->GetBndCondExpansions()[m_bcRegion]->
151  UpdatePhys())[id1+i] = rhoeb;
152  }
153  // Supersonic flows
154  else
155  {
156  for (j = 0; j < nVariables; ++j)
157  {
158  // Extrapolation for supersonic cases
159  (m_fields[j]->GetBndCondExpansions()[m_bcRegion]->
160  UpdatePhys())[id1+i] = Fwd[j][pnt];
161  }
162  }
163  }
164  }
165 }
166 
167 }
Encapsulates the user-defined boundary conditions for compressible flow solver.
Definition: CFSBndCond.h:71
int m_spacedim
Space dimension.
Definition: CFSBndCond.h:95
Array< OneD, Array< OneD, NekDouble > > m_traceNormals
Trace normals.
Definition: CFSBndCond.h:93
int m_bcRegion
Id of the boundary region.
Definition: CFSBndCond.h:109
VariableConverterSharedPtr m_varConv
Auxiliary object to convert variables.
Definition: CFSBndCond.h:97
int m_offset
Offset.
Definition: CFSBndCond.h:111
Array< OneD, MultiRegions::ExpListSharedPtr > m_fields
Array of fields.
Definition: CFSBndCond.h:91
Array< OneD, NekDouble > m_pressureStorage
virtual void v_Apply(Array< OneD, Array< OneD, NekDouble > > &Fwd, Array< OneD, Array< OneD, NekDouble > > &physarray, const NekDouble &time)
std::shared_ptr< SessionReader > SessionReaderSharedPtr
The above copyright notice and this permission notice shall be included.
Definition: CoupledSolver.h:1
CFSBndCondFactory & GetCFSBndCondFactory()
Declaration of the boundary condition factory singleton.
Definition: CFSBndCond.cpp:41
double NekDouble
void Vabs(int n, const T *x, const int incx, T *y, const int incy)
vabs: y = |x|
Definition: Vmath.cpp:493
void Vvtvp(int n, const T *w, const int incw, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
vvtvp (vector times vector plus vector): z = w*x + y
Definition: Vmath.cpp:513
void Vdiv(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Multiply vector z = x/y.
Definition: Vmath.cpp:257
void Vcopy(int n, const T *x, const int incx, T *y, const int incy)
Definition: Vmath.cpp:1199