Nektar++
Public Member Functions | Protected Attributes | Private Member Functions | List of all members
Nektar::Collections::PhysDeriv_SumFac_Prism Class Reference

Phys deriv operator using sum-factorisation (Prism) More...

Inheritance diagram for Nektar::Collections::PhysDeriv_SumFac_Prism:
[legend]

Public Member Functions

 ~PhysDeriv_SumFac_Prism () final
 
void operator() (const Array< OneD, const NekDouble > &input, Array< OneD, NekDouble > &output0, Array< OneD, NekDouble > &output1, Array< OneD, NekDouble > &output2, Array< OneD, NekDouble > &wsp) final
 Perform operation. More...
 
void operator() (int dir, const Array< OneD, const NekDouble > &input, Array< OneD, NekDouble > &output, Array< OneD, NekDouble > &wsp) final
 
virtual void CheckFactors (StdRegions::FactorMap factors, int coll_phys_offset)
 Check the validity of the supplied factor map. More...
 
- Public Member Functions inherited from Nektar::Collections::Operator
 Operator (std::vector< StdRegions::StdExpansionSharedPtr > pCollExp, std::shared_ptr< CoalescedGeomData > GeomData, StdRegions::FactorMap factors)
 Constructor. More...
 
virtual COLLECTIONS_EXPORT ~Operator ()
 
unsigned int GetWspSize ()
 Get the size of the required workspace. More...
 
unsigned int GetNumElmt ()
 Get expansion pointer. More...
 
StdRegions::StdExpansionSharedPtr GetExpSharedPtr ()
 Get expansion pointer. More...
 

Protected Attributes

Array< TwoD, const NekDoublem_derivFac
 
int m_coordim
 
const int m_nquad0
 
const int m_nquad1
 
const int m_nquad2
 
NekDoublem_Deriv0
 
NekDoublem_Deriv1
 
NekDoublem_Deriv2
 
Array< OneD, NekDoublem_fac0
 
Array< OneD, NekDoublem_fac1
 
- Protected Attributes inherited from Nektar::Collections::Operator
bool m_isDeformed
 
StdRegions::StdExpansionSharedPtr m_stdExp
 
unsigned int m_numElmt
 
unsigned int m_nqe
 
unsigned int m_wspSize
 

Private Member Functions

 PhysDeriv_SumFac_Prism (vector< StdRegions::StdExpansionSharedPtr > pCollExp, CoalescedGeomDataSharedPtr pGeomData, StdRegions::FactorMap factors)
 

Detailed Description

Phys deriv operator using sum-factorisation (Prism)

Definition at line 1873 of file PhysDeriv.cpp.

Constructor & Destructor Documentation

◆ ~PhysDeriv_SumFac_Prism()

Nektar::Collections::PhysDeriv_SumFac_Prism::~PhysDeriv_SumFac_Prism ( )
inlinefinal

Definition at line 1878 of file PhysDeriv.cpp.

1879  {
1880  }

◆ PhysDeriv_SumFac_Prism()

Nektar::Collections::PhysDeriv_SumFac_Prism::PhysDeriv_SumFac_Prism ( vector< StdRegions::StdExpansionSharedPtr pCollExp,
CoalescedGeomDataSharedPtr  pGeomData,
StdRegions::FactorMap  factors 
)
inlineprivate

Definition at line 2078 of file PhysDeriv.cpp.

2082  : Operator(pCollExp, pGeomData, factors),
2083  m_nquad0 (m_stdExp->GetNumPoints(0)),
2084  m_nquad1 (m_stdExp->GetNumPoints(1)),
2085  m_nquad2 (m_stdExp->GetNumPoints(2))
2086  {
2087  LibUtilities::PointsKeyVector PtsKey = m_stdExp->GetPointsKeys();
2088 
2089  m_coordim = pCollExp[0]->GetCoordim();
2090 
2091  m_derivFac = pGeomData->GetDerivFactors(pCollExp);
2092 
2093  const Array<OneD, const NekDouble>& z0
2094  = m_stdExp->GetBasis(0)->GetZ();
2095  const Array<OneD, const NekDouble>& z2
2096  = m_stdExp->GetBasis(2)->GetZ();
2097  m_fac0 = Array<OneD, NekDouble>(m_nquad0*m_nquad1*m_nquad2);
2098  m_fac1 = Array<OneD, NekDouble>(m_nquad0*m_nquad1*m_nquad2);
2099  for (int i = 0; i < m_nquad0; ++i)
2100  {
2101  for(int j = 0; j < m_nquad1; ++j)
2102  {
2103  for(int k = 0; k < m_nquad2; ++k)
2104  {
2105  m_fac0[i+j*m_nquad0 + k*m_nquad0*m_nquad1] =
2106  2.0/(1-z2[k]);
2107  m_fac1[i+j*m_nquad0 + k*m_nquad0*m_nquad1] =
2108  0.5*(1+z0[i]);
2109  }
2110  }
2111  }
2112 
2113 
2114 
2115  m_Deriv0 = &((m_stdExp->GetBasis(0)->GetD())->GetPtr())[0];
2116  m_Deriv1 = &((m_stdExp->GetBasis(1)->GetD())->GetPtr())[0];
2117  m_Deriv2 = &((m_stdExp->GetBasis(2)->GetD())->GetPtr())[0];
2118 
2120  }
StdRegions::StdExpansionSharedPtr m_stdExp
Definition: Operator.h:167
Operator(std::vector< StdRegions::StdExpansionSharedPtr > pCollExp, std::shared_ptr< CoalescedGeomData > GeomData, StdRegions::FactorMap factors)
Constructor.
Definition: Operator.cpp:41
Array< TwoD, const NekDouble > m_derivFac
Definition: PhysDeriv.cpp:2066
std::vector< PointsKey > PointsKeyVector
Definition: Points.h:246

Member Function Documentation

◆ CheckFactors()

virtual void Nektar::Collections::PhysDeriv_SumFac_Prism::CheckFactors ( StdRegions::FactorMap  factors,
int  coll_phys_offset 
)
inlinevirtual

Check the validity of the supplied factor map.

Implements Nektar::Collections::Operator.

Definition at line 2058 of file PhysDeriv.cpp.

2060  {
2061  boost::ignore_unused(factors, coll_phys_offset);
2062  ASSERTL0(false, "Not valid for this operator.");
2063  }
#define ASSERTL0(condition, msg)
Definition: ErrorUtil.hpp:216

References ASSERTL0.

◆ operator()() [1/2]

void Nektar::Collections::PhysDeriv_SumFac_Prism::operator() ( const Array< OneD, const NekDouble > &  input,
Array< OneD, NekDouble > &  output0,
Array< OneD, NekDouble > &  output1,
Array< OneD, NekDouble > &  output2,
Array< OneD, NekDouble > &  wsp 
)
inlinefinalvirtual

Perform operation.

Implements Nektar::Collections::Operator.

Definition at line 1882 of file PhysDeriv.cpp.

1888  {
1889 
1890  int nPhys = m_stdExp->GetTotPoints();
1891  int ntot = m_numElmt*nPhys;
1892  Array<OneD, NekDouble> tmp0,tmp1,tmp2;
1893  Array<OneD, Array<OneD, NekDouble> > Diff(3);
1894  Array<OneD, Array<OneD, NekDouble> > out(3);
1895  out[0] = output0; out[1] = output1; out[2] = output2;
1896 
1897  for(int i = 0; i < 3; ++i)
1898  {
1899  Diff[i] = wsp + i*ntot;
1900  }
1901 
1902  // dEta0
1904  m_nquad0,1.0, m_Deriv0,m_nquad0,&input[0],
1905  m_nquad0,0.0,&Diff[0][0],m_nquad0);
1906 
1907  int cnt = 0;
1908  for(int i = 0; i < m_numElmt; ++i)
1909  {
1910 
1911  // dEta 1
1912  for (int j = 0; j < m_nquad2; ++j)
1913  {
1914  Blas::Dgemm('N', 'T', m_nquad0, m_nquad1, m_nquad1,
1915  1.0, &input[i*nPhys+j*m_nquad0*m_nquad1],
1916  m_nquad0, m_Deriv1, m_nquad1, 0.0,
1917  &Diff[1][i*nPhys+j*m_nquad0*m_nquad1],
1918  m_nquad0);
1919  }
1920 
1921  // dEta 2
1923  1.0, &input[i*nPhys],m_nquad0*m_nquad1,
1924  m_Deriv2,m_nquad2, 0.0,&Diff[2][i*nPhys],
1925  m_nquad0*m_nquad1);
1926 
1927  // dxi0 = 2/(1-eta_2) d Eta_0
1928  Vmath::Vmul(nPhys,&m_fac0[0],1,Diff[0].get()+cnt,1,
1929  Diff[0].get()+cnt,1);
1930 
1931  // dxi2 = (1+eta0)/(1-eta_2) d Eta_0 + d/dEta2;
1932  Vmath::Vvtvp(nPhys,&m_fac1[0],1,Diff[0].get()+cnt,1,
1933  Diff[2].get()+cnt,1,Diff[2].get()+cnt,1);
1934  cnt += nPhys;
1935  }
1936 
1937  // calculate full derivative
1938  if(m_isDeformed)
1939  {
1940  for(int i = 0; i < m_coordim; ++i)
1941  {
1942  Vmath::Vmul(ntot,m_derivFac[i*3],1,Diff[0],1,out[i],1);
1943  for(int j = 1; j < 3; ++j)
1944  {
1945  Vmath::Vvtvp (ntot, m_derivFac[i*3+j], 1,
1946  Diff[j], 1,
1947  out[i], 1,
1948  out[i], 1);
1949  }
1950  }
1951  }
1952  else
1953  {
1954  Array<OneD, NekDouble> t;
1955  for(int e = 0; e < m_numElmt; ++e)
1956  {
1957  for(int i = 0; i < m_coordim; ++i)
1958  {
1959  Vmath::Smul(m_nqe,m_derivFac[i*3][e],
1960  Diff[0] + e*m_nqe, 1,
1961  t = out[i] + e*m_nqe,1);
1962 
1963  for(int j = 1; j < 3; ++j)
1964  {
1965  Vmath::Svtvp (m_nqe, m_derivFac[i*3+j][e],
1966  Diff[j] + e*m_nqe, 1,
1967  out[i] + e*m_nqe, 1,
1968  t = out[i] + e*m_nqe, 1);
1969  }
1970  }
1971  }
1972  }
1973  }
static void Dgemm(const char &transa, const char &transb, const int &m, const int &n, const int &k, const double &alpha, const double *a, const int &lda, const double *b, const int &ldb, const double &beta, double *c, const int &ldc)
BLAS level 3: Matrix-matrix multiply C = A x B where op(A)[m x k], op(B)[k x n], C[m x n] DGEMM perfo...
Definition: Blas.hpp:394
void Vmul(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Multiply vector z = x*y.
Definition: Vmath.cpp:192
void Svtvp(int n, const T alpha, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
svtvp (scalar times vector plus vector): z = alpha*x + y
Definition: Vmath.cpp:565
void Vvtvp(int n, const T *w, const int incw, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
vvtvp (vector times vector plus vector): z = w*x + y
Definition: Vmath.cpp:513
void Smul(int n, const T alpha, const T *x, const int incx, T *y, const int incy)
Scalar multiply y = alpha*x.
Definition: Vmath.cpp:225

References Blas::Dgemm(), Vmath::Smul(), Vmath::Svtvp(), Vmath::Vmul(), and Vmath::Vvtvp().

◆ operator()() [2/2]

void Nektar::Collections::PhysDeriv_SumFac_Prism::operator() ( int  dir,
const Array< OneD, const NekDouble > &  input,
Array< OneD, NekDouble > &  output,
Array< OneD, NekDouble > &  wsp 
)
inlinefinalvirtual

Implements Nektar::Collections::Operator.

Definition at line 1975 of file PhysDeriv.cpp.

1979  {
1980  int nPhys = m_stdExp->GetTotPoints();
1981  int ntot = m_numElmt*nPhys;
1982  Array<OneD, NekDouble> tmp0,tmp1,tmp2;
1983  Array<OneD, Array<OneD, NekDouble> > Diff(3);
1984 
1985  for(int i = 0; i < 3; ++i)
1986  {
1987  Diff[i] = wsp + i*ntot;
1988  }
1989 
1990  // dEta0
1992  m_nquad0,1.0, m_Deriv0,m_nquad0,&input[0],
1993  m_nquad0,0.0,&Diff[0][0],m_nquad0);
1994 
1995  int cnt = 0;
1996  for(int i = 0; i < m_numElmt; ++i)
1997  {
1998 
1999  // dEta 1
2000  for (int j = 0; j < m_nquad2; ++j)
2001  {
2002  Blas::Dgemm('N', 'T', m_nquad0, m_nquad1, m_nquad1,
2003  1.0, &input[i*nPhys+j*m_nquad0*m_nquad1],
2004  m_nquad0, m_Deriv1, m_nquad1, 0.0,
2005  &Diff[1][i*nPhys+j*m_nquad0*m_nquad1],
2006  m_nquad0);
2007  }
2008 
2009  // dEta 2
2011  1.0, &input[i*nPhys],m_nquad0*m_nquad1,
2012  m_Deriv2,m_nquad2, 0.0,&Diff[2][i*nPhys],
2013  m_nquad0*m_nquad1);
2014 
2015  // dxi0 = 2/(1-eta_2) d Eta_0
2016  Vmath::Vmul(nPhys,&m_fac0[0],1,Diff[0].get()+cnt,1,
2017  Diff[0].get()+cnt,1);
2018 
2019  // dxi2 = (1+eta0)/(1-eta_2) d Eta_0 + d/dEta2;
2020  Vmath::Vvtvp(nPhys,&m_fac1[0],1,Diff[0].get()+cnt,1,
2021  Diff[2].get()+cnt,1,Diff[2].get()+cnt,1);
2022  cnt += nPhys;
2023  }
2024 
2025  // calculate full derivative
2026  if(m_isDeformed)
2027  {
2028  // calculate full derivative
2029  Vmath::Vmul(ntot,m_derivFac[dir*3],1,Diff[0],1,output,1);
2030  for(int j = 1; j < 3; ++j)
2031  {
2032  Vmath::Vvtvp (ntot, m_derivFac[dir*3+j], 1,
2033  Diff[j], 1,
2034  output, 1,
2035  output, 1);
2036  }
2037  }
2038  else
2039  {
2040  Array<OneD, NekDouble> t;
2041  for(int e = 0; e < m_numElmt; ++e)
2042  {
2043  Vmath::Smul(m_nqe,m_derivFac[dir*3][e],
2044  Diff[0] + e*m_nqe, 1,
2045  t = output + e*m_nqe,1);
2046 
2047  for(int j = 1; j < 3; ++j)
2048  {
2049  Vmath::Svtvp (m_nqe, m_derivFac[dir*3+j][e],
2050  Diff[j] + e*m_nqe, 1,
2051  output + e*m_nqe, 1,
2052  t = output + e*m_nqe, 1);
2053  }
2054  }
2055  }
2056  }

References Blas::Dgemm(), Vmath::Smul(), Vmath::Svtvp(), Vmath::Vmul(), and Vmath::Vvtvp().

Member Data Documentation

◆ m_coordim

int Nektar::Collections::PhysDeriv_SumFac_Prism::m_coordim
protected

Definition at line 2067 of file PhysDeriv.cpp.

◆ m_Deriv0

NekDouble* Nektar::Collections::PhysDeriv_SumFac_Prism::m_Deriv0
protected

Definition at line 2071 of file PhysDeriv.cpp.

◆ m_Deriv1

NekDouble* Nektar::Collections::PhysDeriv_SumFac_Prism::m_Deriv1
protected

Definition at line 2072 of file PhysDeriv.cpp.

◆ m_Deriv2

NekDouble* Nektar::Collections::PhysDeriv_SumFac_Prism::m_Deriv2
protected

Definition at line 2073 of file PhysDeriv.cpp.

◆ m_derivFac

Array<TwoD, const NekDouble> Nektar::Collections::PhysDeriv_SumFac_Prism::m_derivFac
protected

Definition at line 2066 of file PhysDeriv.cpp.

◆ m_fac0

Array<OneD, NekDouble> Nektar::Collections::PhysDeriv_SumFac_Prism::m_fac0
protected

Definition at line 2074 of file PhysDeriv.cpp.

◆ m_fac1

Array<OneD, NekDouble> Nektar::Collections::PhysDeriv_SumFac_Prism::m_fac1
protected

Definition at line 2075 of file PhysDeriv.cpp.

◆ m_nquad0

const int Nektar::Collections::PhysDeriv_SumFac_Prism::m_nquad0
protected

Definition at line 2068 of file PhysDeriv.cpp.

◆ m_nquad1

const int Nektar::Collections::PhysDeriv_SumFac_Prism::m_nquad1
protected

Definition at line 2069 of file PhysDeriv.cpp.

◆ m_nquad2

const int Nektar::Collections::PhysDeriv_SumFac_Prism::m_nquad2
protected

Definition at line 2070 of file PhysDeriv.cpp.