Nektar++
Public Member Functions | Protected Attributes | Private Member Functions | List of all members
Nektar::Collections::PhysDeriv_SumFac_Tet Class Reference

Phys deriv operator using sum-factorisation (Tet) More...

Inheritance diagram for Nektar::Collections::PhysDeriv_SumFac_Tet:
[legend]

Public Member Functions

 ~PhysDeriv_SumFac_Tet () final
 
void operator() (const Array< OneD, const NekDouble > &input, Array< OneD, NekDouble > &output0, Array< OneD, NekDouble > &output1, Array< OneD, NekDouble > &output2, Array< OneD, NekDouble > &wsp) final
 Perform operation. More...
 
void operator() (int dir, const Array< OneD, const NekDouble > &input, Array< OneD, NekDouble > &output, Array< OneD, NekDouble > &wsp) final
 
virtual void CheckFactors (StdRegions::FactorMap factors, int coll_phys_offset)
 Check the validity of the supplied factor map. More...
 
- Public Member Functions inherited from Nektar::Collections::Operator
 Operator (std::vector< StdRegions::StdExpansionSharedPtr > pCollExp, std::shared_ptr< CoalescedGeomData > GeomData, StdRegions::FactorMap factors)
 Constructor. More...
 
virtual COLLECTIONS_EXPORT ~Operator ()
 
unsigned int GetWspSize ()
 Get the size of the required workspace. More...
 
unsigned int GetNumElmt ()
 Get expansion pointer. More...
 
StdRegions::StdExpansionSharedPtr GetExpSharedPtr ()
 Get expansion pointer. More...
 

Protected Attributes

Array< TwoD, const NekDoublem_derivFac
 
int m_coordim
 
const int m_nquad0
 
const int m_nquad1
 
const int m_nquad2
 
NekDoublem_Deriv0
 
NekDoublem_Deriv1
 
NekDoublem_Deriv2
 
Array< OneD, NekDoublem_fac0
 
Array< OneD, NekDoublem_fac1
 
Array< OneD, NekDoublem_fac2
 
Array< OneD, NekDoublem_fac3
 
- Protected Attributes inherited from Nektar::Collections::Operator
bool m_isDeformed
 
StdRegions::StdExpansionSharedPtr m_stdExp
 
unsigned int m_numElmt
 
unsigned int m_nqe
 
unsigned int m_wspSize
 

Private Member Functions

 PhysDeriv_SumFac_Tet (vector< StdRegions::StdExpansionSharedPtr > pCollExp, CoalescedGeomDataSharedPtr pGeomData, StdRegions::FactorMap factors)
 

Detailed Description

Phys deriv operator using sum-factorisation (Tet)

Definition at line 1555 of file PhysDeriv.cpp.

Constructor & Destructor Documentation

◆ ~PhysDeriv_SumFac_Tet()

Nektar::Collections::PhysDeriv_SumFac_Tet::~PhysDeriv_SumFac_Tet ( )
inlinefinal

Definition at line 1560 of file PhysDeriv.cpp.

1561  {
1562  }

◆ PhysDeriv_SumFac_Tet()

Nektar::Collections::PhysDeriv_SumFac_Tet::PhysDeriv_SumFac_Tet ( vector< StdRegions::StdExpansionSharedPtr pCollExp,
CoalescedGeomDataSharedPtr  pGeomData,
StdRegions::FactorMap  factors 
)
inlineprivate

Definition at line 1806 of file PhysDeriv.cpp.

1810  : Operator(pCollExp, pGeomData, factors),
1811  m_nquad0 (m_stdExp->GetNumPoints(0)),
1812  m_nquad1 (m_stdExp->GetNumPoints(1)),
1813  m_nquad2 (m_stdExp->GetNumPoints(2))
1814  {
1815  LibUtilities::PointsKeyVector PtsKey = m_stdExp->GetPointsKeys();
1816 
1817  m_coordim = pCollExp[0]->GetCoordim();
1818 
1819  m_derivFac = pGeomData->GetDerivFactors(pCollExp);
1820 
1821  m_Deriv0 = &((m_stdExp->GetBasis(0)->GetD())->GetPtr())[0];
1822  m_Deriv1 = &((m_stdExp->GetBasis(1)->GetD())->GetPtr())[0];
1823  m_Deriv2 = &((m_stdExp->GetBasis(2)->GetD())->GetPtr())[0];
1824 
1826 
1827  const Array<OneD, const NekDouble>& z0
1828  = m_stdExp->GetBasis(0)->GetZ();
1829  const Array<OneD, const NekDouble>& z1
1830  = m_stdExp->GetBasis(1)->GetZ();
1831  const Array<OneD, const NekDouble>& z2
1832  = m_stdExp->GetBasis(2)->GetZ();
1833 
1834  m_fac0 = Array<OneD, NekDouble>(m_nquad0*m_nquad1*m_nquad2);
1835  m_fac1 = Array<OneD, NekDouble>(m_nquad0*m_nquad1*m_nquad2);
1836  m_fac2 = Array<OneD, NekDouble>(m_nquad0*m_nquad1*m_nquad2);
1837  m_fac3 = Array<OneD, NekDouble>(m_nquad0*m_nquad1*m_nquad2);
1838  // calculate 2.0/((1-eta_1)(1-eta_2))
1839  for (int i = 0; i < m_nquad0; ++i)
1840  {
1841  for(int j = 0; j < m_nquad1; ++j)
1842  {
1843  for(int k = 0; k < m_nquad2; ++k)
1844  {
1845 
1846  m_fac0[i + j*m_nquad0 + k*m_nquad0*m_nquad1]
1847  = 4.0/((1-z1[j])*(1-z2[k]));
1848  m_fac1[i + j*m_nquad0 + k*m_nquad0*m_nquad1]
1849  = 2.0*(1+z0[i])/((1-z1[j])*(1-z2[k]));
1850  m_fac2[i + j*m_nquad0 + k*m_nquad0*m_nquad1]
1851  = 2.0/(1-z2[k]);
1852  m_fac3[i + j*m_nquad0 + k*m_nquad0*m_nquad1]
1853  = (1+z1[j])/(1-z2[k]);
1854  }
1855  }
1856  }
1857 
1858  }
StdRegions::StdExpansionSharedPtr m_stdExp
Definition: Operator.h:167
Operator(std::vector< StdRegions::StdExpansionSharedPtr > pCollExp, std::shared_ptr< CoalescedGeomData > GeomData, StdRegions::FactorMap factors)
Constructor.
Definition: Operator.cpp:41
Array< TwoD, const NekDouble > m_derivFac
Definition: PhysDeriv.cpp:1792
std::vector< PointsKey > PointsKeyVector
Definition: Points.h:246

Member Function Documentation

◆ CheckFactors()

virtual void Nektar::Collections::PhysDeriv_SumFac_Tet::CheckFactors ( StdRegions::FactorMap  factors,
int  coll_phys_offset 
)
inlinevirtual

Check the validity of the supplied factor map.

Implements Nektar::Collections::Operator.

Definition at line 1784 of file PhysDeriv.cpp.

1786  {
1787  boost::ignore_unused(factors, coll_phys_offset);
1788  ASSERTL0(false, "Not valid for this operator.");
1789  }
#define ASSERTL0(condition, msg)
Definition: ErrorUtil.hpp:216

References ASSERTL0.

◆ operator()() [1/2]

void Nektar::Collections::PhysDeriv_SumFac_Tet::operator() ( const Array< OneD, const NekDouble > &  input,
Array< OneD, NekDouble > &  output0,
Array< OneD, NekDouble > &  output1,
Array< OneD, NekDouble > &  output2,
Array< OneD, NekDouble > &  wsp 
)
inlinefinalvirtual

Perform operation.

Implements Nektar::Collections::Operator.

Definition at line 1564 of file PhysDeriv.cpp.

1570  {
1571 
1572  int nPhys = m_stdExp->GetTotPoints();
1573  int ntot = m_numElmt*nPhys;
1574  Array<OneD, NekDouble> tmp0,tmp1,tmp2;
1575  Array<OneD, Array<OneD, NekDouble> > Diff(3);
1576  Array<OneD, Array<OneD, NekDouble> > out(3);
1577  out[0] = output0; out[1] = output1; out[2] = output2;
1578 
1579  for(int i = 0; i < 3; ++i)
1580  {
1581  Diff[i] = wsp + i*ntot;
1582  }
1583 
1584  // dEta0
1586  m_nquad0,1.0, m_Deriv0,m_nquad0,&input[0],
1587  m_nquad0,0.0,&Diff[0][0],m_nquad0);
1588 
1589  // dEta2
1590  for(int i = 0; i < m_numElmt; ++i)
1591  {
1593  1.0, &input[i*nPhys],m_nquad0*m_nquad1,
1594  m_Deriv2,m_nquad2, 0.0,&Diff[2][i*nPhys],
1595  m_nquad0*m_nquad1);
1596  }
1597 
1598  for(int i = 0; i < m_numElmt; ++i)
1599  {
1600 
1601  // dEta1
1602  for (int j = 0; j < m_nquad2; ++j)
1603  {
1604  Blas::Dgemm('N', 'T', m_nquad0, m_nquad1, m_nquad1,
1605  1.0, &input[i*nPhys+j*m_nquad0*m_nquad1],
1606  m_nquad0, m_Deriv1, m_nquad1, 0.0,
1607  &Diff[1][i*nPhys+j*m_nquad0*m_nquad1],
1608  m_nquad0);
1609  }
1610 
1611  // dxi2 = (1 + eta_1)/(1 -eta_2)*dEta1 + dEta2
1612  Vmath::Vvtvp(nPhys, m_fac3.get(), 1,
1613  Diff[1].get() + i*nPhys, 1,
1614  Diff[2].get() + i*nPhys, 1,
1615  Diff[2].get() + i*nPhys, 1);
1616 
1617  // dxi1 = 2/(1 - eta_2) dEta1
1618  Vmath::Vmul(nPhys, m_fac2.get(), 1,
1619  Diff[1].get() + i*nPhys, 1,
1620  Diff[1].get() + i*nPhys, 1);
1621 
1622  // dxi1 = 2.0(1+eta_0)/((1-eta_1)(1-eta_2)) dEta0 + dxi1
1623  Vmath::Vvtvp(nPhys, m_fac1.get(), 1,
1624  Diff[0].get() + i*nPhys, 1,
1625  Diff[1].get() + i*nPhys, 1,
1626  Diff[1].get() + i*nPhys, 1);
1627 
1628  // dxi2 = 2.0(1+eta_0)/((1-eta_1)(1-eta_2)) dEta0 + dxi2
1629  Vmath::Vvtvp(nPhys, m_fac1.get(), 1,
1630  Diff[0].get() + i*nPhys, 1,
1631  Diff[2].get() + i*nPhys, 1,
1632  Diff[2].get() + i*nPhys, 1);
1633 
1634  // dxi0 = 4.0/((1-eta_1)(1-eta_2)) dEta0
1635  Vmath::Vmul(nPhys, m_fac0.get(), 1,
1636  Diff[0].get() + i*nPhys, 1,
1637  Diff[0].get() + i*nPhys, 1);
1638 
1639  }
1640 
1641  // calculate full derivative
1642  if(m_isDeformed)
1643  {
1644  for(int i = 0; i < m_coordim; ++i)
1645  {
1646  Vmath::Vmul(ntot,m_derivFac[i*3],1,Diff[0],1,out[i],1);
1647  for(int j = 1; j < 3; ++j)
1648  {
1649  Vmath::Vvtvp (ntot, m_derivFac[i*3+j], 1,
1650  Diff[j], 1,
1651  out[i], 1,
1652  out[i], 1);
1653  }
1654  }
1655  }
1656  else
1657  {
1658  Array<OneD, NekDouble> t;
1659  for(int e = 0; e < m_numElmt; ++e)
1660  {
1661  for(int i = 0; i < m_coordim; ++i)
1662  {
1663  Vmath::Smul(m_nqe,m_derivFac[i*3][e],
1664  Diff[0] + e*m_nqe, 1,
1665  t = out[i] + e*m_nqe,1);
1666 
1667  for(int j = 1; j < 3; ++j)
1668  {
1669  Vmath::Svtvp (m_nqe, m_derivFac[i*3+j][e],
1670  Diff[j] + e*m_nqe, 1,
1671  out[i] + e*m_nqe, 1,
1672  t = out[i] + e*m_nqe, 1);
1673  }
1674  }
1675  }
1676  }
1677  }
static void Dgemm(const char &transa, const char &transb, const int &m, const int &n, const int &k, const double &alpha, const double *a, const int &lda, const double *b, const int &ldb, const double &beta, double *c, const int &ldc)
BLAS level 3: Matrix-matrix multiply C = A x B where op(A)[m x k], op(B)[k x n], C[m x n] DGEMM perfo...
Definition: Blas.hpp:394
void Vmul(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Multiply vector z = x*y.
Definition: Vmath.cpp:192
void Svtvp(int n, const T alpha, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
svtvp (scalar times vector plus vector): z = alpha*x + y
Definition: Vmath.cpp:565
void Vvtvp(int n, const T *w, const int incw, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
vvtvp (vector times vector plus vector): z = w*x + y
Definition: Vmath.cpp:513
void Smul(int n, const T alpha, const T *x, const int incx, T *y, const int incy)
Scalar multiply y = alpha*x.
Definition: Vmath.cpp:225

References Blas::Dgemm(), Vmath::Smul(), Vmath::Svtvp(), Vmath::Vmul(), and Vmath::Vvtvp().

◆ operator()() [2/2]

void Nektar::Collections::PhysDeriv_SumFac_Tet::operator() ( int  dir,
const Array< OneD, const NekDouble > &  input,
Array< OneD, NekDouble > &  output,
Array< OneD, NekDouble > &  wsp 
)
inlinefinalvirtual

Implements Nektar::Collections::Operator.

Definition at line 1679 of file PhysDeriv.cpp.

1683  {
1684  int nPhys = m_stdExp->GetTotPoints();
1685  int ntot = m_numElmt*nPhys;
1686  Array<OneD, NekDouble> tmp0,tmp1,tmp2;
1687  Array<OneD, Array<OneD, NekDouble> > Diff(3);
1688 
1689  for(int i = 0; i < 3; ++i)
1690  {
1691  Diff[i] = wsp + i*ntot;
1692  }
1693 
1694  // dEta0
1696  m_nquad0,1.0, m_Deriv0,m_nquad0,&input[0],
1697  m_nquad0,0.0,&Diff[0][0],m_nquad0);
1698 
1699  // dEta2
1700  for(int i = 0; i < m_numElmt; ++i)
1701  {
1703  1.0, &input[i*nPhys],m_nquad0*m_nquad1,
1704  m_Deriv2,m_nquad2, 0.0,&Diff[2][i*nPhys],
1705  m_nquad0*m_nquad1);
1706  }
1707 
1708  for(int i = 0; i < m_numElmt; ++i)
1709  {
1710 
1711  // dEta1
1712  for (int j = 0; j < m_nquad2; ++j)
1713  {
1714  Blas::Dgemm('N', 'T', m_nquad0, m_nquad1, m_nquad1,
1715  1.0, &input[i*nPhys+j*m_nquad0*m_nquad1],
1716  m_nquad0, m_Deriv1, m_nquad1, 0.0,
1717  &Diff[1][i*nPhys+j*m_nquad0*m_nquad1],
1718  m_nquad0);
1719  }
1720 
1721  // dxi2 = (1 + eta_1)/(1 -eta_2)*dEta1 + dEta2
1722  Vmath::Vvtvp(nPhys, m_fac3.get(), 1,
1723  Diff[1].get() + i*nPhys, 1,
1724  Diff[2].get() + i*nPhys, 1,
1725  Diff[2].get() + i*nPhys, 1);
1726 
1727  // dxi1 = 2/(1 - eta_2) dEta1
1728  Vmath::Vmul(nPhys, m_fac2.get(), 1,
1729  Diff[1].get() + i*nPhys, 1,
1730  Diff[1].get() + i*nPhys, 1);
1731 
1732  // dxi1 = 2.0(1+eta_0)/((1-eta_1)(1-eta_2)) dEta0 + dxi1
1733  Vmath::Vvtvp(nPhys, m_fac1.get(), 1,
1734  Diff[0].get() + i*nPhys, 1,
1735  Diff[1].get() + i*nPhys, 1,
1736  Diff[1].get() + i*nPhys, 1);
1737 
1738  // dxi2 = 2.0(1+eta_0)/((1-eta_1)(1-eta_2)) dEta0 + dxi2
1739  Vmath::Vvtvp(nPhys, m_fac1.get(), 1,
1740  Diff[0].get() + i*nPhys, 1,
1741  Diff[2].get() + i*nPhys, 1,
1742  Diff[2].get() + i*nPhys, 1);
1743 
1744  // dxi0 = 4.0/((1-eta_1)(1-eta_2)) dEta0
1745  Vmath::Vmul(nPhys, m_fac0.get(), 1,
1746  Diff[0].get() + i*nPhys, 1,
1747  Diff[0].get() + i*nPhys, 1);
1748 
1749  }
1750 
1751  // calculate full derivative
1752  if(m_isDeformed)
1753  {
1754  // calculate full derivative
1755  Vmath::Vmul(ntot,m_derivFac[dir*3],1,Diff[0],1,output,1);
1756  for(int j = 1; j < 3; ++j)
1757  {
1758  Vmath::Vvtvp (ntot, m_derivFac[dir*3+j], 1,
1759  Diff[j], 1,
1760  output, 1,
1761  output, 1);
1762  }
1763  }
1764  else
1765  {
1766  Array<OneD, NekDouble> t;
1767  for(int e = 0; e < m_numElmt; ++e)
1768  {
1769  Vmath::Smul(m_nqe,m_derivFac[dir*3][e],
1770  Diff[0] + e*m_nqe, 1,
1771  t = output + e*m_nqe,1);
1772 
1773  for(int j = 1; j < 3; ++j)
1774  {
1775  Vmath::Svtvp (m_nqe, m_derivFac[dir*3+j][e],
1776  Diff[j] + e*m_nqe, 1,
1777  output + e*m_nqe, 1,
1778  t = output + e*m_nqe, 1);
1779  }
1780  }
1781  }
1782  }

References Blas::Dgemm(), Vmath::Smul(), Vmath::Svtvp(), Vmath::Vmul(), and Vmath::Vvtvp().

Member Data Documentation

◆ m_coordim

int Nektar::Collections::PhysDeriv_SumFac_Tet::m_coordim
protected

Definition at line 1793 of file PhysDeriv.cpp.

◆ m_Deriv0

NekDouble* Nektar::Collections::PhysDeriv_SumFac_Tet::m_Deriv0
protected

Definition at line 1797 of file PhysDeriv.cpp.

◆ m_Deriv1

NekDouble* Nektar::Collections::PhysDeriv_SumFac_Tet::m_Deriv1
protected

Definition at line 1798 of file PhysDeriv.cpp.

◆ m_Deriv2

NekDouble* Nektar::Collections::PhysDeriv_SumFac_Tet::m_Deriv2
protected

Definition at line 1799 of file PhysDeriv.cpp.

◆ m_derivFac

Array<TwoD, const NekDouble> Nektar::Collections::PhysDeriv_SumFac_Tet::m_derivFac
protected

Definition at line 1792 of file PhysDeriv.cpp.

◆ m_fac0

Array<OneD, NekDouble> Nektar::Collections::PhysDeriv_SumFac_Tet::m_fac0
protected

Definition at line 1800 of file PhysDeriv.cpp.

◆ m_fac1

Array<OneD, NekDouble> Nektar::Collections::PhysDeriv_SumFac_Tet::m_fac1
protected

Definition at line 1801 of file PhysDeriv.cpp.

◆ m_fac2

Array<OneD, NekDouble> Nektar::Collections::PhysDeriv_SumFac_Tet::m_fac2
protected

Definition at line 1802 of file PhysDeriv.cpp.

◆ m_fac3

Array<OneD, NekDouble> Nektar::Collections::PhysDeriv_SumFac_Tet::m_fac3
protected

Definition at line 1803 of file PhysDeriv.cpp.

◆ m_nquad0

const int Nektar::Collections::PhysDeriv_SumFac_Tet::m_nquad0
protected

Definition at line 1794 of file PhysDeriv.cpp.

◆ m_nquad1

const int Nektar::Collections::PhysDeriv_SumFac_Tet::m_nquad1
protected

Definition at line 1795 of file PhysDeriv.cpp.

◆ m_nquad2

const int Nektar::Collections::PhysDeriv_SumFac_Tet::m_nquad2
protected

Definition at line 1796 of file PhysDeriv.cpp.