Nektar++
Public Member Functions | Protected Attributes | Private Member Functions | Private Attributes | List of all members
Nektar::LibUtilities::Transposition Class Reference

#include <Transposition.h>

Public Member Functions

 Transposition (const LibUtilities::BasisKey &HomoBasis0, LibUtilities::CommSharedPtr hcomm0, LibUtilities::CommSharedPtr hcomm1)
 
 Transposition (const LibUtilities::BasisKey &HomoBasis0, const LibUtilities::BasisKey &HomoBasis1, LibUtilities::CommSharedPtr hcomm)
 
 Transposition (const LibUtilities::BasisKey &HomoBasis0, const LibUtilities::BasisKey &HomoBasis1, const LibUtilities::BasisKey &HomoBasis2, LibUtilities::CommSharedPtr hcomm)
 
 ~Transposition ()
 
unsigned int GetK (int i)
 
Array< OneD, unsigned int > GetKs (void)
 
unsigned int GetPlaneID (int i)
 
unsigned int GetStripID (void)
 
Array< OneD, unsigned int > GetPlanesIDs (void)
 
void Transpose (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, bool UseNumMode=false, TranspositionDir dir=eNoTrans)
 
void SetSpecVanVisc (Array< OneD, NekDouble > visc)
 
NekDouble GetSpecVanVisc (const int k)
 

Protected Attributes

CommSharedPtr m_hcomm
 

Private Member Functions

void TransposeXYtoZ (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, bool UseNumMode=false)
 
void TransposeZtoXY (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, bool UseNumMode=false)
 
void TransposeXtoYZ (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, bool UseNumMode=false)
 
void TransposeYZtoX (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, bool UseNumMode=false)
 
void TransposeYZtoZY (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, bool UseNumMode=false)
 
void TransposeZYtoYZ (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, bool UseNumMode=false)
 

Private Attributes

int m_num_homogeneous_directions
 
Array< OneD, int > m_num_points_per_proc
 Number of homogeneous points on each processor per direction. More...
 
Array< OneD, int > m_num_homogeneous_points
 Total homogeneous points per direction. More...
 
Array< OneD, int > m_num_homogeneous_coeffs
 Total number of homogeneous coefficients. More...
 
Array< OneD, int > m_num_processes
 
int m_rank_id
 Rank of process. More...
 
Array< OneD, unsigned int > m_planes_IDs
 IDs of the planes on the processes. More...
 
unsigned int m_strip_ID
 IDs of the strips on the processes. More...
 
Array< OneD, unsigned int > m_K
 Fourier wave numbers associated with the planes. More...
 
Array< OneD, int > m_SizeMap
 MPI_Alltoallv map containing size of send/recv buffer. More...
 
Array< OneD, int > m_OffsetMap
 MPI_Alltoallv offset map of send/recv buffer in global vector. More...
 

Detailed Description

Definition at line 68 of file Transposition.h.

Constructor & Destructor Documentation

◆ Transposition() [1/3]

Nektar::LibUtilities::Transposition::Transposition ( const LibUtilities::BasisKey HomoBasis0,
LibUtilities::CommSharedPtr  hcomm0,
LibUtilities::CommSharedPtr  hcomm1 
)

Constructor for 1D transform.

Definition at line 52 of file Transposition.cpp.

55 {
56  m_hcomm = hcomm1;
58 
63 
64  m_num_homogeneous_points[0] = HomoBasis0.GetNumPoints();
65  m_num_homogeneous_coeffs[0] = HomoBasis0.GetNumModes();
66  m_num_processes[0] = m_hcomm->GetSize();
68  m_rank_id = m_hcomm->GetRank();
69 
70  //================================================================
71  // TODO: Need to be generalised for 1D, 2D and 3D
72  m_planes_IDs = Array<OneD, unsigned int>(m_num_points_per_proc[0]);
73  m_K = Array<OneD, unsigned int>(m_num_points_per_proc[0]);
74 
75  for (int i = 0; i < m_num_points_per_proc[0]; i++)
76  {
78  }
79 
80  int global_rank_id = hcomm0->GetColumnComm()->GetRank();
81  int NumStrips = hcomm0->GetColumnComm()->GetSize() / m_hcomm->GetSize();
82  m_strip_ID = 0;
83 
84  if (NumStrips > 1)
85  {
86  m_strip_ID = (NumStrips > global_rank_id)
87  ? global_rank_id
88  : (global_rank_id - NumStrips);
89  }
90 
91  if (HomoBasis0.GetBasisType() == LibUtilities::eFourier)
92  {
93  for (int i = 0; i < m_num_points_per_proc[0]; i++)
94  {
95  m_K[i] = m_planes_IDs[i] / 2;
96  }
97  }
98 
99  if (HomoBasis0.GetBasisType() == LibUtilities::eFourierSingleMode)
100  {
101  m_K[0] = 1;
102  m_K[1] = 1;
103  }
104 
105  if (HomoBasis0.GetBasisType() == LibUtilities::eFourierHalfModeRe ||
106  HomoBasis0.GetBasisType() == LibUtilities::eFourierHalfModeIm)
107  {
108  m_K[0] = 1;
109  }
110  //================================================================
111 }
unsigned int m_strip_ID
IDs of the strips on the processes.
Array< OneD, int > m_num_homogeneous_coeffs
Total number of homogeneous coefficients.
Array< OneD, int > m_num_points_per_proc
Number of homogeneous points on each processor per direction.
Array< OneD, int > m_num_homogeneous_points
Total homogeneous points per direction.
Array< OneD, unsigned int > m_K
Fourier wave numbers associated with the planes.
Array< OneD, unsigned int > m_planes_IDs
IDs of the planes on the processes.
@ eFourierSingleMode
Fourier ModifiedExpansion with just the first mode .
Definition: BasisType.h:59
@ eFourierHalfModeIm
Fourier Modified expansions with just the imaginary part of the first mode
Definition: BasisType.h:61
@ eFourierHalfModeRe
Fourier Modified expansions with just the real part of the first mode
Definition: BasisType.h:60
@ eFourier
Fourier Expansion .
Definition: BasisType.h:53

References Nektar::LibUtilities::eFourier, Nektar::LibUtilities::eFourierHalfModeIm, Nektar::LibUtilities::eFourierHalfModeRe, Nektar::LibUtilities::eFourierSingleMode, Nektar::LibUtilities::BasisKey::GetBasisType(), Nektar::LibUtilities::BasisKey::GetNumModes(), Nektar::LibUtilities::BasisKey::GetNumPoints(), m_hcomm, m_K, m_num_homogeneous_coeffs, m_num_homogeneous_directions, m_num_homogeneous_points, m_num_points_per_proc, m_num_processes, m_planes_IDs, m_rank_id, and m_strip_ID.

◆ Transposition() [2/3]

Nektar::LibUtilities::Transposition::Transposition ( const LibUtilities::BasisKey HomoBasis0,
const LibUtilities::BasisKey HomoBasis1,
LibUtilities::CommSharedPtr  hcomm 
)

Constructor for 2D transform.

Definition at line 116 of file Transposition.cpp.

119 {
120  m_hcomm = hcomm;
122 
126  m_num_processes = Array<OneD, int>(m_num_homogeneous_directions);
127 
128  m_num_homogeneous_points[0] = HomoBasis0.GetNumPoints();
129  m_num_homogeneous_coeffs[0] = HomoBasis0.GetNumModes();
130  m_num_homogeneous_points[1] = HomoBasis1.GetNumPoints();
131  m_num_homogeneous_coeffs[1] = HomoBasis1.GetNumModes();
132 
133  m_num_processes[0] = m_hcomm->GetRowComm()->GetSize();
134  m_num_processes[1] = m_hcomm->GetColumnComm()->GetSize();
135 
138 
139  //================================================================
140  // TODO: Need set up for 2D lines IDs and Ks if Fourier
141  //================================================================
142 }

References Nektar::LibUtilities::BasisKey::GetNumModes(), Nektar::LibUtilities::BasisKey::GetNumPoints(), m_hcomm, m_num_homogeneous_coeffs, m_num_homogeneous_directions, m_num_homogeneous_points, m_num_points_per_proc, and m_num_processes.

◆ Transposition() [3/3]

Nektar::LibUtilities::Transposition::Transposition ( const LibUtilities::BasisKey HomoBasis0,
const LibUtilities::BasisKey HomoBasis1,
const LibUtilities::BasisKey HomoBasis2,
LibUtilities::CommSharedPtr  hcomm 
)

Constructor for 3D transform.

Definition at line 147 of file Transposition.cpp.

151 {
152  boost::ignore_unused(HomoBasis0, HomoBasis1, HomoBasis2);
153 
154  m_hcomm = hcomm;
156 
160  m_num_processes = Array<OneD, int>(m_num_homogeneous_directions);
161 
162  //================================================================
163  // TODO: Need set up for 3D
164  ASSERTL0(false, "Transposition is not set up for 3D.");
165  //================================================================
166 }
#define ASSERTL0(condition, msg)
Definition: ErrorUtil.hpp:216

References ASSERTL0, m_hcomm, m_num_homogeneous_coeffs, m_num_homogeneous_directions, m_num_homogeneous_points, m_num_points_per_proc, and m_num_processes.

◆ ~Transposition()

Nektar::LibUtilities::Transposition::~Transposition ( )

Destructor

Definition at line 171 of file Transposition.cpp.

172 {
173 }

Member Function Documentation

◆ GetK()

unsigned int Nektar::LibUtilities::Transposition::GetK ( int  i)

Definition at line 177 of file Transposition.cpp.

178 {
179  return m_K[i];
180 }

References m_K.

◆ GetKs()

Array< OneD, unsigned int > Nektar::LibUtilities::Transposition::GetKs ( void  )

Definition at line 182 of file Transposition.cpp.

183 {
184  return m_K;
185 }

References m_K.

◆ GetPlaneID()

unsigned int Nektar::LibUtilities::Transposition::GetPlaneID ( int  i)

Definition at line 187 of file Transposition.cpp.

188 {
189  return m_planes_IDs[i];
190 }

References m_planes_IDs.

◆ GetPlanesIDs()

Array< OneD, unsigned int > Nektar::LibUtilities::Transposition::GetPlanesIDs ( void  )

Definition at line 192 of file Transposition.cpp.

193 {
194  return m_planes_IDs;
195 }

References m_planes_IDs.

◆ GetSpecVanVisc()

NekDouble Nektar::LibUtilities::Transposition::GetSpecVanVisc ( const int  k)

◆ GetStripID()

unsigned int Nektar::LibUtilities::Transposition::GetStripID ( void  )

Definition at line 197 of file Transposition.cpp.

198 {
199  return m_strip_ID;
200 }

References m_strip_ID.

◆ SetSpecVanVisc()

void Nektar::LibUtilities::Transposition::SetSpecVanVisc ( Array< OneD, NekDouble visc)

◆ Transpose()

void Nektar::LibUtilities::Transposition::Transpose ( const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray,
bool  UseNumMode = false,
TranspositionDir  dir = eNoTrans 
)

Main method: General transposition, the dir parameters define if 1D,2D,3D and which transposition is required at the same time

Definition at line 206 of file Transposition.cpp.

209 {
210  switch (dir)
211  {
212  case eXYtoZ:
213  {
214  TransposeXYtoZ(inarray, outarray, UseNumMode);
215  }
216  break;
217  case eZtoXY:
218  {
219  TransposeZtoXY(inarray, outarray, UseNumMode);
220  }
221  break;
222  case eXtoYZ:
223  {
224  TransposeXtoYZ(inarray, outarray, UseNumMode);
225  }
226  break;
227  case eYZtoX:
228  {
229  TransposeYZtoX(inarray, outarray, UseNumMode);
230  }
231  break;
232  case eYZtoZY:
233  {
234  TransposeYZtoZY(inarray, outarray, UseNumMode);
235  }
236  break;
237  case eZYtoYZ:
238  {
239  TransposeZYtoYZ(inarray, outarray, UseNumMode);
240  }
241  break;
242  case eXtoY:
243  {
244  ASSERTL0(false, "Transposition not implemented yet.");
245  }
246  break;
247  case eYtoZ:
248  {
249  ASSERTL0(false, "Transposition not implemented yet.");
250  }
251  break;
252  case eZtoX:
253  {
254  ASSERTL0(false, "Transposition not implemented yet.");
255  }
256  break;
257  default:
258  {
259  ASSERTL0(false, "Transposition type does not exist.");
260  }
261  }
262 }
void TransposeXYtoZ(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, bool UseNumMode=false)
void TransposeYZtoZY(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, bool UseNumMode=false)
void TransposeZtoXY(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, bool UseNumMode=false)
void TransposeXtoYZ(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, bool UseNumMode=false)
void TransposeYZtoX(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, bool UseNumMode=false)
void TransposeZYtoYZ(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, bool UseNumMode=false)

References ASSERTL0, Nektar::LibUtilities::eXtoY, Nektar::LibUtilities::eXtoYZ, Nektar::LibUtilities::eXYtoZ, Nektar::LibUtilities::eYtoZ, Nektar::LibUtilities::eYZtoX, Nektar::LibUtilities::eYZtoZY, Nektar::LibUtilities::eZtoX, Nektar::LibUtilities::eZtoXY, Nektar::LibUtilities::eZYtoYZ, TransposeXtoYZ(), TransposeXYtoZ(), TransposeYZtoX(), TransposeYZtoZY(), TransposeZtoXY(), and TransposeZYtoYZ().

◆ TransposeXtoYZ()

void Nektar::LibUtilities::Transposition::TransposeXtoYZ ( const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray,
bool  UseNumMode = false 
)
private

Homogeneous 2D transposition from SEM to Homogeneous(YZ) ordering.

Definition at line 476 of file Transposition.cpp.

479 {
480  if (m_num_processes[0] > 1 || m_num_processes[1] > 1)
481  {
482  ASSERTL0(false, "Parallel transposition not implemented yet for "
483  "3D-Homo-2D approach.");
484  }
485  else
486  {
487  int i, pts_per_line;
488  int n = inarray.size();
489  int packed_len;
490 
491  pts_per_line =
493 
494  if (UseNumMode)
495  {
496  packed_len =
498  }
499  else
500  {
501  packed_len =
503  }
504 
505  ASSERTL1(&inarray[0] != &outarray[0],
506  "Inarray and outarray cannot be the same");
507 
508  for (i = 0; i < packed_len; ++i)
509  {
510  Vmath::Vcopy(pts_per_line, &(inarray[i * pts_per_line]), 1,
511  &(outarray[i]), packed_len);
512  }
513  }
514 }
#define ASSERTL1(condition, msg)
Assert Level 1 – Debugging which is used whether in FULLDEBUG or DEBUG compilation mode....
Definition: ErrorUtil.hpp:250
void Vcopy(int n, const T *x, const int incx, T *y, const int incy)
Definition: Vmath.cpp:1199

References ASSERTL0, ASSERTL1, m_num_homogeneous_coeffs, m_num_homogeneous_points, m_num_processes, and Vmath::Vcopy().

Referenced by Transpose().

◆ TransposeXYtoZ()

void Nektar::LibUtilities::Transposition::TransposeXYtoZ ( const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray,
bool  UseNumMode = false 
)
private

Homogeneous 1D transposition from SEM to Homogeneous ordering.

Definition at line 267 of file Transposition.cpp.

270 {
271  if (m_num_processes[0] > 1)
272  {
273  // Paramerers set up
274  int i, packed_len;
275  int copy_len = 0;
276  int index = 0;
277  int cnt = 0;
278 
279  int num_dofs = inarray.size();
280  int num_points_per_plane = num_dofs / m_num_points_per_proc[0];
281  int num_pencil_per_proc =
282  (num_points_per_plane / m_num_processes[0]) +
283  (num_points_per_plane % m_num_processes[0] > 0);
284 
285  m_SizeMap = Array<OneD, int>(m_num_processes[0], 0);
286  m_OffsetMap = Array<OneD, int>(m_num_processes[0], 0);
287 
288  for (i = 0; i < m_num_processes[0]; i++)
289  {
290  m_SizeMap[i] = num_pencil_per_proc * m_num_points_per_proc[0];
291  m_OffsetMap[i] = i * num_pencil_per_proc * m_num_points_per_proc[0];
292  }
293 
294  Array<OneD, NekDouble> tmp_outarray(
295  num_pencil_per_proc * m_num_homogeneous_points[0], 0.0);
296 
297  if (UseNumMode)
298  {
299  packed_len = m_num_homogeneous_coeffs[0];
300  }
301  else
302  {
303  packed_len = m_num_homogeneous_points[0];
304  }
305 
306  // Start Transposition
307  while (index < num_points_per_plane)
308  {
309  copy_len = num_pencil_per_proc < (num_points_per_plane - index)
310  ? num_pencil_per_proc
311  : (num_points_per_plane - index);
312 
313  for (i = 0; i < m_num_points_per_proc[0]; i++)
314  {
315  Vmath::Vcopy(copy_len,
316  &(inarray[index + (i * num_points_per_plane)]), 1,
317  &(outarray[cnt]), 1);
318 
319  cnt += num_pencil_per_proc;
320  }
321 
322  index += copy_len;
323  }
324 
325  m_hcomm->AlltoAllv(outarray, m_SizeMap, m_OffsetMap, tmp_outarray,
327 
328  for (i = 0; i < packed_len; ++i)
329  {
330  Vmath::Vcopy(num_pencil_per_proc,
331  &(tmp_outarray[i * num_pencil_per_proc]), 1,
332  &(outarray[i]), packed_len);
333  }
334  // End Transposition
335  }
336 
337  // Serial case implementation (more efficient then MPI 1 processor
338  // implemenation)
339  else
340  {
341  int i, pts_per_plane;
342  int n = inarray.size();
343  int packed_len;
344 
345  pts_per_plane = n / m_num_points_per_proc[0];
346 
347  if (UseNumMode)
348  {
349  packed_len = m_num_homogeneous_coeffs[0];
350  }
351  else
352  {
353  packed_len = m_num_homogeneous_points[0];
354  }
355 
356  ASSERTL1(&inarray[0] != &outarray[0],
357  "Inarray and outarray cannot be the same");
358 
359  for (i = 0; i < packed_len; ++i)
360  {
361  Vmath::Vcopy(pts_per_plane, &(inarray[i * pts_per_plane]), 1,
362  &(outarray[i]), packed_len);
363  }
364  }
365 }
Array< OneD, int > m_OffsetMap
MPI_Alltoallv offset map of send/recv buffer in global vector.
Array< OneD, int > m_SizeMap
MPI_Alltoallv map containing size of send/recv buffer.

References ASSERTL1, m_hcomm, m_num_homogeneous_coeffs, m_num_homogeneous_points, m_num_points_per_proc, m_num_processes, m_OffsetMap, m_SizeMap, and Vmath::Vcopy().

Referenced by Transpose().

◆ TransposeYZtoX()

void Nektar::LibUtilities::Transposition::TransposeYZtoX ( const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray,
bool  UseNumMode = false 
)
private

Homogeneous 2D transposition from Homogeneous (YZ) ordering to SEM.

Definition at line 519 of file Transposition.cpp.

522 {
523  if (m_num_processes[0] > 1 || m_num_processes[1] > 1)
524  {
525  ASSERTL0(false, "Parallel transposition not implemented yet for "
526  "3D-Homo-2D approach.");
527  }
528  else
529  {
530  int i, pts_per_line;
531  int n = inarray.size();
532  int packed_len;
533 
534  pts_per_line =
536 
537  if (UseNumMode)
538  {
539  packed_len =
541  }
542  else
543  {
544  packed_len =
546  }
547 
548  ASSERTL1(&inarray[0] != &outarray[0],
549  "Inarray and outarray cannot be the same");
550 
551  for (i = 0; i < packed_len; ++i)
552  {
553  Vmath::Vcopy(pts_per_line, &(inarray[i]), packed_len,
554  &(outarray[i * pts_per_line]), 1);
555  }
556  }
557 }

References ASSERTL0, ASSERTL1, m_num_homogeneous_coeffs, m_num_homogeneous_points, m_num_processes, and Vmath::Vcopy().

Referenced by Transpose().

◆ TransposeYZtoZY()

void Nektar::LibUtilities::Transposition::TransposeYZtoZY ( const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray,
bool  UseNumMode = false 
)
private

Homogeneous 2D transposition from Y ordering to Z.

Definition at line 562 of file Transposition.cpp.

565 {
566  boost::ignore_unused(UseNumMode);
567 
568  if (m_num_processes[0] > 1 || m_num_processes[1] > 1)
569  {
570  ASSERTL0(false, "Parallel transposition not implemented yet for "
571  "3D-Homo-2D approach.");
572  }
573  else
574  {
576  int s = inarray.size();
577 
578  int pts_per_line = s / n;
579 
580  int packed_len = pts_per_line * m_num_homogeneous_points[1];
581 
582  for (int i = 0; i < m_num_homogeneous_points[0]; ++i)
583  {
584  Vmath::Vcopy(packed_len, &(inarray[i]), m_num_homogeneous_points[0],
585  &(outarray[i * packed_len]), 1);
586  }
587  }
588 }

References ASSERTL0, m_num_homogeneous_points, m_num_processes, and Vmath::Vcopy().

Referenced by Transpose().

◆ TransposeZtoXY()

void Nektar::LibUtilities::Transposition::TransposeZtoXY ( const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray,
bool  UseNumMode = false 
)
private

Homogeneous 1D transposition from Homogeneous to SEM ordering.

Definition at line 370 of file Transposition.cpp.

373 {
374  if (m_num_processes[0] > 1)
375  {
376  // Paramerers set up
377  int i, packed_len;
378  int copy_len = 0;
379  int index = 0;
380  int cnt = 0;
381 
382  int num_dofs = outarray.size();
383  int num_points_per_plane = num_dofs / m_num_points_per_proc[0];
384  int num_pencil_per_proc =
385  (num_points_per_plane / m_num_processes[0]) +
386  (num_points_per_plane % m_num_processes[0] > 0);
387 
388  m_SizeMap = Array<OneD, int>(m_num_processes[0], 0);
389  m_OffsetMap = Array<OneD, int>(m_num_processes[0], 0);
390 
391  for (i = 0; i < m_num_processes[0]; i++)
392  {
393  m_SizeMap[i] = num_pencil_per_proc * m_num_points_per_proc[0];
394  m_OffsetMap[i] = i * num_pencil_per_proc * m_num_points_per_proc[0];
395  }
396 
397  Array<OneD, NekDouble> tmp_inarray(
398  num_pencil_per_proc * m_num_homogeneous_points[0], 0.0);
399  Array<OneD, NekDouble> tmp_outarray(
400  num_pencil_per_proc * m_num_homogeneous_points[0], 0.0);
401 
402  if (UseNumMode)
403  {
404  packed_len = m_num_homogeneous_coeffs[0];
405  }
406  else
407  {
408  packed_len = m_num_homogeneous_points[0];
409  }
410 
411  // Start Transposition
412  for (i = 0; i < packed_len; ++i)
413  {
414  Vmath::Vcopy(num_pencil_per_proc, &(inarray[i]), packed_len,
415  &(tmp_inarray[i * num_pencil_per_proc]), 1);
416  }
417 
418  m_hcomm->AlltoAllv(tmp_inarray, m_SizeMap, m_OffsetMap, tmp_outarray,
420 
421  while (index < num_points_per_plane)
422  {
423  copy_len = num_pencil_per_proc < (num_points_per_plane - index)
424  ? num_pencil_per_proc
425  : (num_points_per_plane - index);
426 
427  for (i = 0; i < m_num_points_per_proc[0]; i++)
428  {
429  Vmath::Vcopy(copy_len, &(tmp_outarray[cnt]), 1,
430  &(outarray[index + (i * num_points_per_plane)]),
431  1);
432 
433  cnt += num_pencil_per_proc;
434  }
435 
436  index += copy_len;
437  }
438  // End Transposition
439  }
440 
441  // Serial case implementation (more efficient then MPI 1 processor
442  // implemenation)
443  else
444  {
445  int i, pts_per_plane;
446  int n = inarray.size();
447  int packed_len;
448 
449  // use length of inarray to determine data storage type
450  // (i.e.modal or physical).
451  pts_per_plane = n / m_num_points_per_proc[0];
452 
453  if (UseNumMode)
454  {
455  packed_len = m_num_homogeneous_coeffs[0];
456  }
457  else
458  {
459  packed_len = m_num_homogeneous_points[0];
460  }
461 
462  ASSERTL1(&inarray[0] != &outarray[0],
463  "Inarray and outarray cannot be the same");
464 
465  for (i = 0; i < packed_len; ++i)
466  {
467  Vmath::Vcopy(pts_per_plane, &(inarray[i]), packed_len,
468  &(outarray[i * pts_per_plane]), 1);
469  }
470  }
471 }

References ASSERTL1, m_hcomm, m_num_homogeneous_coeffs, m_num_homogeneous_points, m_num_points_per_proc, m_num_processes, m_OffsetMap, m_SizeMap, and Vmath::Vcopy().

Referenced by Transpose().

◆ TransposeZYtoYZ()

void Nektar::LibUtilities::Transposition::TransposeZYtoYZ ( const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray,
bool  UseNumMode = false 
)
private

Homogeneous 2D transposition from Z ordering to Y.

Definition at line 593 of file Transposition.cpp.

596 {
597  boost::ignore_unused(UseNumMode);
598 
599  if (m_num_processes[0] > 1 || m_num_processes[1] > 1)
600  {
601  ASSERTL0(false, "Parallel transposition not implemented yet for "
602  "3D-Homo-2D approach.");
603  }
604  else
605  {
607  int s = inarray.size();
608 
609  int pts_per_line = s / n;
610 
611  int packed_len = pts_per_line * m_num_homogeneous_points[1];
612 
613  for (int i = 0; i < packed_len; ++i)
614  {
615  Vmath::Vcopy(m_num_homogeneous_points[0], &(inarray[i]), packed_len,
616  &(outarray[i * m_num_homogeneous_points[0]]), 1);
617  }
618  }
619 }

References ASSERTL0, m_num_homogeneous_points, m_num_processes, and Vmath::Vcopy().

Referenced by Transpose().

Member Data Documentation

◆ m_hcomm

CommSharedPtr Nektar::LibUtilities::Transposition::m_hcomm
protected

Definition at line 106 of file Transposition.h.

Referenced by TransposeXYtoZ(), TransposeZtoXY(), and Transposition().

◆ m_K

Array<OneD, unsigned int> Nektar::LibUtilities::Transposition::m_K
private

Fourier wave numbers associated with the planes.

Definition at line 156 of file Transposition.h.

Referenced by GetK(), GetKs(), and Transposition().

◆ m_num_homogeneous_coeffs

Array<OneD, int> Nektar::LibUtilities::Transposition::m_num_homogeneous_coeffs
private

Total number of homogeneous coefficients.

Definition at line 142 of file Transposition.h.

Referenced by TransposeXtoYZ(), TransposeXYtoZ(), TransposeYZtoX(), TransposeZtoXY(), and Transposition().

◆ m_num_homogeneous_directions

int Nektar::LibUtilities::Transposition::m_num_homogeneous_directions
private

Definition at line 133 of file Transposition.h.

Referenced by Transposition().

◆ m_num_homogeneous_points

Array<OneD, int> Nektar::LibUtilities::Transposition::m_num_homogeneous_points
private

Total homogeneous points per direction.

Definition at line 139 of file Transposition.h.

Referenced by TransposeXtoYZ(), TransposeXYtoZ(), TransposeYZtoX(), TransposeYZtoZY(), TransposeZtoXY(), TransposeZYtoYZ(), and Transposition().

◆ m_num_points_per_proc

Array<OneD, int> Nektar::LibUtilities::Transposition::m_num_points_per_proc
private

Number of homogeneous points on each processor per direction.

Definition at line 136 of file Transposition.h.

Referenced by TransposeXYtoZ(), TransposeZtoXY(), and Transposition().

◆ m_num_processes

Array<OneD, int> Nektar::LibUtilities::Transposition::m_num_processes
private

◆ m_OffsetMap

Array<OneD, int> Nektar::LibUtilities::Transposition::m_OffsetMap
private

MPI_Alltoallv offset map of send/recv buffer in global vector.

Definition at line 162 of file Transposition.h.

Referenced by TransposeXYtoZ(), and TransposeZtoXY().

◆ m_planes_IDs

Array<OneD, unsigned int> Nektar::LibUtilities::Transposition::m_planes_IDs
private

IDs of the planes on the processes.

Definition at line 150 of file Transposition.h.

Referenced by GetPlaneID(), GetPlanesIDs(), and Transposition().

◆ m_rank_id

int Nektar::LibUtilities::Transposition::m_rank_id
private

Rank of process.

Definition at line 147 of file Transposition.h.

Referenced by Transposition().

◆ m_SizeMap

Array<OneD, int> Nektar::LibUtilities::Transposition::m_SizeMap
private

MPI_Alltoallv map containing size of send/recv buffer.

Definition at line 159 of file Transposition.h.

Referenced by TransposeXYtoZ(), and TransposeZtoXY().

◆ m_strip_ID

unsigned int Nektar::LibUtilities::Transposition::m_strip_ID
private

IDs of the strips on the processes.

Definition at line 153 of file Transposition.h.

Referenced by GetStripID(), and Transposition().