Nektar++
|
This class is the abstraction of a global continuous two- dimensional spectral/hp element expansion which approximates the solution of a set of partial differential equations. More...
#include <ContField.h>
Public Member Functions | |
ContField () | |
The default constructor. More... | |
ContField (const LibUtilities::SessionReaderSharedPtr &pSession, const SpatialDomains::MeshGraphSharedPtr &graph2D, const std::string &variable="DefaultVar", const bool DeclareCoeffPhysArrays=true, const bool CheckIfSingularSystem=false, const Collections::ImplementationType ImpType=Collections::eNoImpType) | |
This constructor sets up global continuous field based on an input mesh and boundary conditions. More... | |
ContField (const ContField &In, const SpatialDomains::MeshGraphSharedPtr &graph2D, const std::string &variable, const bool DeclareCoeffPhysArrays=true, const bool CheckIfSingularSystem=false) | |
Construct a global continuous field with solution type based on another field but using a separate input mesh and boundary conditions. More... | |
ContField (const ContField &In, bool DeclareCoeffPhysArrays=true) | |
The copy constructor. More... | |
ContField (const LibUtilities::SessionReaderSharedPtr &pSession, const ExpList &In) | |
Copy constructor. More... | |
virtual | ~ContField () |
The default destructor. More... | |
void | Assemble () |
Assembles the global coefficients \(\boldsymbol{\hat{u}}_g\) from the local coefficients \(\boldsymbol{\hat{u}}_l\). More... | |
void | Assemble (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray) const |
Assembles the global coefficients \(\boldsymbol{\hat{u}}_g\) from the local coefficients \(\boldsymbol{\hat{u}}_l\). More... | |
const AssemblyMapCGSharedPtr & | GetLocalToGlobalMap () const |
Returns the map from local to global level. More... | |
void | IProductWRTBase (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray) |
Calculates the inner product of a function \(f(\boldsymbol{x})\) with respect to all global expansion modes \(\phi_n^e(\boldsymbol{x})\). More... | |
void | FwdTrans (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray) |
Performs the global forward transformation of a function \(f(\boldsymbol{x})\), subject to the boundary conditions specified. More... | |
void | BwdTrans (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray) |
Performs the backward transformation of the spectral/hp element expansion. More... | |
void | MultiplyByInvMassMatrix (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray) |
Multiply a solution by the inverse mass matrix. More... | |
void | LaplaceSolve (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const Array< OneD, const NekDouble > &dirForcing=NullNekDouble1DArray, const Array< OneD, Array< OneD, NekDouble > > &variablecoeffs=NullNekDoubleArrayOfArray, NekDouble time=0.0) |
Solves the two-dimensional Laplace equation, subject to the boundary conditions specified. More... | |
void | LinearAdvectionEigs (const NekDouble ax, const NekDouble ay, Array< OneD, NekDouble > &Real, Array< OneD, NekDouble > &Imag, Array< OneD, NekDouble > &Evecs=NullNekDouble1DArray) |
Compute the eigenvalues of the linear advection operator. More... | |
const Array< OneD, const MultiRegions::ExpListSharedPtr > & | GetBndCondExpansions () |
Returns the boundary conditions expansion. More... | |
const Array< OneD, const SpatialDomains::BoundaryConditionShPtr > & | GetBndConditions () |
Returns the boundary conditions. More... | |
int | GetGlobalMatrixNnz (const GlobalMatrixKey &gkey) |
![]() | |
DisContField () | |
Default constructor. More... | |
DisContField (const LibUtilities::SessionReaderSharedPtr &pSession, const SpatialDomains::MeshGraphSharedPtr &graph, const std::string &variable, const bool SetUpJustDG=true, const bool DeclareCoeffPhysArrays=true, const Collections::ImplementationType ImpType=Collections::eNoImpType) | |
Constructs a 1D discontinuous field based on a mesh and boundary conditions. More... | |
DisContField (const LibUtilities::SessionReaderSharedPtr &pSession, const SpatialDomains::MeshGraphSharedPtr &graph1D, const SpatialDomains::CompositeMap &domain, const SpatialDomains::BoundaryConditions &Allbcs, const std::string &variable, bool SetToOneSpaceDimensions=false, const Collections::ImplementationType ImpType=Collections::eNoImpType) | |
Constructor for a DisContField from a List of subdomains New Constructor for arterial network. More... | |
DisContField (const DisContField &In, const bool DeclareCoeffPhysArrays=true) | |
Constructs a 1D discontinuous field based on an existing field. More... | |
DisContField (const DisContField &In, const SpatialDomains::MeshGraphSharedPtr &graph, const std::string &variable, const bool SetUpJustDG=false, const bool DeclareCoeffPhysArrays=true) | |
DisContField (const ExpList &In) | |
Constructs a 1D discontinuous field based on an existing field. (needed in order to use ContField( const ExpList &In) constructor. More... | |
virtual | ~DisContField () |
Destructor. More... | |
GlobalLinSysSharedPtr | GetGlobalBndLinSys (const GlobalLinSysKey &mkey) |
For a given key, returns the associated global linear system. More... | |
bool | SameTypeOfBoundaryConditions (const DisContField &In) |
Check to see if expansion has the same BCs as In. More... | |
std::vector< bool > & | GetNegatedFluxNormal (void) |
NekDouble | L2_DGDeriv (const int dir, const Array< OneD, const NekDouble > &soln) |
Calculate the \( L^2 \) error of the \( Q_{\rm dir} \) derivative using the consistent DG evaluation of \( Q_{\rm dir} \). More... | |
void | EvaluateHDGPostProcessing (Array< OneD, NekDouble > &outarray) |
Evaluate HDG post-processing to increase polynomial order of solution. More... | |
![]() | |
ExpList (const ExpansionType Type=eNoType) | |
The default constructor using a type. More... | |
ExpList (const ExpList &in, const bool DeclareCoeffPhysArrays=true) | |
The copy constructor. More... | |
ExpList (const ExpList &in, const std::vector< unsigned int > &eIDs, const bool DeclareCoeffPhysArrays=true, const Collections::ImplementationType ImpType=Collections::eNoImpType) | |
Constructor copying only elements defined in eIds. More... | |
ExpList (const LibUtilities::SessionReaderSharedPtr &pSession, const SpatialDomains::MeshGraphSharedPtr &graph, const bool DeclareCoeffPhysArrays=true, const std::string &var="DefaultVar", const Collections::ImplementationType ImpType=Collections::eNoImpType) | |
Generate an ExpList from a meshgraph graph and session file. More... | |
ExpList (const LibUtilities::SessionReaderSharedPtr &pSession, const SpatialDomains::ExpansionInfoMap &expansions, const bool DeclareCoeffPhysArrays=true, const Collections::ImplementationType ImpType=Collections::eNoImpType) | |
Sets up a list of local expansions based on an expansion Map. More... | |
ExpList (const SpatialDomains::PointGeomSharedPtr &geom) | |
Specialised constructors for 0D Expansions Wrapper around LocalRegion::PointExp - used in PrePacing.cpp. More... | |
ExpList (const LibUtilities::SessionReaderSharedPtr &pSession, const Array< OneD, const ExpListSharedPtr > &bndConstraint, const Array< OneD, const SpatialDomains ::BoundaryConditionShPtr > &bndCond, const LocalRegions::ExpansionVector &locexp, const SpatialDomains::MeshGraphSharedPtr &graph, const bool DeclareCoeffPhysArrays=true, const std::string variable="DefaultVar", const Collections::ImplementationType ImpType=Collections::eNoImpType) | |
Generate expansions for the trace space expansions used in DisContField. More... | |
ExpList (const LibUtilities::SessionReaderSharedPtr &pSession, const SpatialDomains::CompositeMap &domain, const SpatialDomains::MeshGraphSharedPtr &graph, const bool DeclareCoeffPhysArrays=true, const std::string variable="DefaultVar", bool SetToOneSpaceDimension=false, const LibUtilities::CommSharedPtr comm=LibUtilities::CommSharedPtr(), const Collections::ImplementationType ImpType=Collections::eNoImpType) | |
Constructor based on domain information only for 1D & 2D boundary conditions. More... | |
virtual | ~ExpList () |
The default destructor. More... | |
int | GetNcoeffs (void) const |
Returns the total number of local degrees of freedom \(N_{\mathrm{eof}}=\sum_{e=1}^{{N_{\mathrm{el}}}}N^{e}_m\). More... | |
int | GetNcoeffs (const int eid) const |
Returns the total number of local degrees of freedom for element eid. More... | |
ExpansionType | GetExpType (void) |
Returns the type of the expansion. More... | |
void | SetExpType (ExpansionType Type) |
Returns the type of the expansion. More... | |
int | EvalBasisNumModesMax (void) const |
Evaulates the maximum number of modes in the elemental basis order over all elements. More... | |
const Array< OneD, int > | EvalBasisNumModesMaxPerExp (void) const |
Returns the vector of the number of modes in the elemental basis order over all elements. More... | |
int | GetTotPoints (void) const |
Returns the total number of quadrature points m_npoints \(=Q_{\mathrm{tot}}\). More... | |
int | GetTotPoints (const int eid) const |
Returns the total number of quadrature points for eid's element \(=Q_{\mathrm{tot}}\). More... | |
int | GetNpoints (void) const |
Returns the total number of quadrature points m_npoints \(=Q_{\mathrm{tot}}\). More... | |
int | Get1DScaledTotPoints (const NekDouble scale) const |
Returns the total number of qudature points scaled by the factor scale on each 1D direction. More... | |
void | SetWaveSpace (const bool wavespace) |
Sets the wave space to the one of the possible configuration true or false. More... | |
void | SetModifiedBasis (const bool modbasis) |
Set Modified Basis for the stability analysis. More... | |
void | SetPhys (int i, NekDouble val) |
Set the i th value of m_phys to value val. More... | |
bool | GetWaveSpace (void) const |
This function returns the third direction expansion condition, which can be in wave space (coefficient) or not It is stored in the variable m_WaveSpace. More... | |
void | SetPhys (const Array< OneD, const NekDouble > &inarray) |
Fills the array m_phys. More... | |
void | SetPhysArray (Array< OneD, NekDouble > &inarray) |
Sets the array m_phys. More... | |
void | SetPhysState (const bool physState) |
This function manually sets whether the array of physical values \(\boldsymbol{u}_l\) (implemented as m_phys) is filled or not. More... | |
bool | GetPhysState (void) const |
This function indicates whether the array of physical values \(\boldsymbol{u}_l\) (implemented as m_phys) is filled or not. More... | |
void | MultiplyByQuadratureMetric (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray) |
multiply the metric jacobi and quadrature weights More... | |
void | DivideByQuadratureMetric (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray) |
Divided by the metric jacobi and quadrature weights. More... | |
void | IProductWRTBase_IterPerExp (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray) |
This function calculates the inner product of a function \(f(\boldsymbol{x})\) with respect to all local expansion modes \(\phi_n^e(\boldsymbol{x})\). More... | |
void | IProductWRTBase (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray) |
void | IProductWRTDerivBase (const int dir, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray) |
This function calculates the inner product of a function \(f(\boldsymbol{x})\) with respect to the derivative (in direction. More... | |
void | IProductWRTDirectionalDerivBase (const Array< OneD, const NekDouble > &direction, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray) |
Directional derivative along a given direction. More... | |
void | IProductWRTDerivBase (const Array< OneD, const Array< OneD, NekDouble > > &inarray, Array< OneD, NekDouble > &outarray) |
This function calculates the inner product of a function \(f(\boldsymbol{x})\) with respect to the derivative of all local expansion modes \(\phi_n^e(\boldsymbol{x})\). More... | |
void | FwdTrans_IterPerExp (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray) |
This function elementally evaluates the forward transformation of a function \(u(\boldsymbol{x})\) onto the global spectral/hp expansion. More... | |
void | FwdTrans (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray) |
void | ExponentialFilter (Array< OneD, NekDouble > &array, const NekDouble alpha, const NekDouble exponent, const NekDouble cutoff) |
void | MultiplyByElmtInvMass (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray) |
This function elementally mulplies the coefficient space of Sin my the elemental inverse of the mass matrix. More... | |
void | MultiplyByInvMassMatrix (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray) |
void | MultiplyByMassMatrix (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray) |
void | SmoothField (Array< OneD, NekDouble > &field) |
Smooth a field across elements. More... | |
void | HelmSolve (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdRegions::ConstFactorMap &factors, const StdRegions::VarCoeffMap &varcoeff=StdRegions::NullVarCoeffMap, const MultiRegions::VarFactorsMap &varfactors=MultiRegions::NullVarFactorsMap, const Array< OneD, const NekDouble > &dirForcing=NullNekDouble1DArray, const bool PhysSpaceForcing=true) |
Solve helmholtz problem. More... | |
void | LinearAdvectionDiffusionReactionSolve (const Array< OneD, Array< OneD, NekDouble > > &velocity, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const NekDouble lambda, const Array< OneD, const NekDouble > &dirForcing=NullNekDouble1DArray) |
Solve Advection Diffusion Reaction. More... | |
void | LinearAdvectionReactionSolve (const Array< OneD, Array< OneD, NekDouble > > &velocity, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const NekDouble lambda, const Array< OneD, const NekDouble > &dirForcing=NullNekDouble1DArray) |
Solve Advection Diffusion Reaction. More... | |
void | FwdTrans_BndConstrained (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray) |
void | BwdTrans_IterPerExp (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray) |
This function elementally evaluates the backward transformation of the global spectral/hp element expansion. More... | |
void | BwdTrans (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray) |
void | GetCoords (Array< OneD, NekDouble > &coord_0, Array< OneD, NekDouble > &coord_1=NullNekDouble1DArray, Array< OneD, NekDouble > &coord_2=NullNekDouble1DArray) |
This function calculates the coordinates of all the elemental quadrature points \(\boldsymbol{x}_i\). More... | |
void | HomogeneousFwdTrans (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, bool Shuff=true, bool UnShuff=true) |
void | HomogeneousBwdTrans (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, bool Shuff=true, bool UnShuff=true) |
void | DealiasedProd (const Array< OneD, NekDouble > &inarray1, const Array< OneD, NekDouble > &inarray2, Array< OneD, NekDouble > &outarray) |
void | DealiasedDotProd (const Array< OneD, Array< OneD, NekDouble > > &inarray1, const Array< OneD, Array< OneD, NekDouble > > &inarray2, Array< OneD, Array< OneD, NekDouble > > &outarray) |
void | GetBCValues (Array< OneD, NekDouble > &BndVals, const Array< OneD, NekDouble > &TotField, int BndID) |
void | NormVectorIProductWRTBase (Array< OneD, const NekDouble > &V1, Array< OneD, const NekDouble > &V2, Array< OneD, NekDouble > &outarray, int BndID) |
void | NormVectorIProductWRTBase (Array< OneD, Array< OneD, NekDouble > > &V, Array< OneD, NekDouble > &outarray) |
void | ApplyGeomInfo () |
Apply geometry information to each expansion. More... | |
void | Reset () |
Reset geometry information and reset matrices. More... | |
void | WriteTecplotHeader (std::ostream &outfile, std::string var="") |
void | WriteTecplotZone (std::ostream &outfile, int expansion=-1) |
void | WriteTecplotField (std::ostream &outfile, int expansion=-1) |
void | WriteTecplotConnectivity (std::ostream &outfile, int expansion=-1) |
void | WriteVtkHeader (std::ostream &outfile) |
void | WriteVtkFooter (std::ostream &outfile) |
void | WriteVtkPieceHeader (std::ostream &outfile, int expansion, int istrip=0) |
void | WriteVtkPieceFooter (std::ostream &outfile, int expansion) |
void | WriteVtkPieceData (std::ostream &outfile, int expansion, std::string var="v") |
int | GetCoordim (int eid) |
This function returns the dimension of the coordinates of the element eid. More... | |
void | SetCoeff (int i, NekDouble val) |
Set the i th coefficiient in m_coeffs to value val. More... | |
void | SetCoeffs (int i, NekDouble val) |
Set the i th coefficiient in m_coeffs to value val. More... | |
void | SetCoeffsArray (Array< OneD, NekDouble > &inarray) |
Set the m_coeffs array to inarray. More... | |
int | GetShapeDimension () |
This function returns the dimension of the shape of the element eid. More... | |
const Array< OneD, const NekDouble > & | GetCoeffs () const |
This function returns (a reference to) the array \(\boldsymbol{\hat{u}}_l\) (implemented as m_coeffs) containing all local expansion coefficients. More... | |
void | ImposeDirichletConditions (Array< OneD, NekDouble > &outarray) |
Impose Dirichlet Boundary Conditions onto Array. More... | |
void | FillBndCondFromField (void) |
Fill Bnd Condition expansion from the values stored in expansion. More... | |
void | FillBndCondFromField (const int nreg) |
Fill Bnd Condition expansion in nreg from the values stored in expansion. More... | |
void | LocalToGlobal (bool useComm=true) |
Gathers the global coefficients \(\boldsymbol{\hat{u}}_g\) from the local coefficients \(\boldsymbol{\hat{u}}_l\). More... | |
void | LocalToGlobal (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, bool useComm=true) |
void | GlobalToLocal (void) |
Scatters from the global coefficients \(\boldsymbol{\hat{u}}_g\) to the local coefficients \(\boldsymbol{\hat{u}}_l\). More... | |
void | GlobalToLocal (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray) |
NekDouble | GetCoeff (int i) |
Get the i th value (coefficient) of m_coeffs. More... | |
NekDouble | GetCoeffs (int i) |
Get the i th value (coefficient) of m_coeffs. More... | |
const Array< OneD, const NekDouble > & | GetPhys () const |
This function returns (a reference to) the array \(\boldsymbol{u}_l\) (implemented as m_phys) containing the function \(u^{\delta}(\boldsymbol{x})\) evaluated at the quadrature points. More... | |
NekDouble | Linf (const Array< OneD, const NekDouble > &inarray, const Array< OneD, const NekDouble > &soln=NullNekDouble1DArray) |
This function calculates the \(L_\infty\) error of the global spectral/hp element approximation. More... | |
NekDouble | L2 (const Array< OneD, const NekDouble > &inarray, const Array< OneD, const NekDouble > &soln=NullNekDouble1DArray) |
This function calculates the \(L_2\) error with respect to soln of the global spectral/hp element approximation. More... | |
NekDouble | H1 (const Array< OneD, const NekDouble > &inarray, const Array< OneD, const NekDouble > &soln=NullNekDouble1DArray) |
Calculates the \(H^1\) error of the global spectral/hp element approximation. More... | |
NekDouble | Integral () |
NekDouble | Integral (const Array< OneD, const NekDouble > &inarray) |
NekDouble | VectorFlux (const Array< OneD, Array< OneD, NekDouble > > &inarray) |
Array< OneD, const NekDouble > | HomogeneousEnergy (void) |
This function calculates the energy associated with each one of the modesof a 3D homogeneous nD expansion. More... | |
void | SetHomo1DSpecVanVisc (Array< OneD, NekDouble > visc) |
This function sets the Spectral Vanishing Viscosity in homogeneous1D expansion. More... | |
Array< OneD, const unsigned int > | GetZIDs (void) |
This function returns a vector containing the wave numbers in z-direction associated with the 3D homogenous expansion. Required if a parellelisation is applied in the Fourier direction. More... | |
LibUtilities::TranspositionSharedPtr | GetTransposition (void) |
This function returns the transposition class associated with the homogeneous expansion. More... | |
NekDouble | GetHomoLen (void) |
This function returns the Width of homogeneous direction associated with the homogeneous expansion. More... | |
void | SetHomoLen (const NekDouble lhom) |
This function sets the Width of homogeneous direction associated with the homogeneous expansion. More... | |
Array< OneD, const unsigned int > | GetYIDs (void) |
This function returns a vector containing the wave numbers in y-direction associated with the 3D homogenous expansion. Required if a parellelisation is applied in the Fourier direction. More... | |
void | PhysInterp1DScaled (const NekDouble scale, const Array< OneD, NekDouble > &inarray, Array< OneD, NekDouble > &outarray) |
This function interpolates the physical space points in inarray to outarray using the same points defined in the expansion but where the number of points are rescaled by 1DScale. More... | |
void | PhysGalerkinProjection1DScaled (const NekDouble scale, const Array< OneD, NekDouble > &inarray, Array< OneD, NekDouble > &outarray) |
This function Galerkin projects the physical space points in inarray to outarray where inarray is assumed to be defined in the expansion but where the number of points are rescaled by 1DScale. More... | |
int | GetExpSize (void) |
This function returns the number of elements in the expansion. More... | |
int | GetNumElmts (void) |
This function returns the number of elements in the expansion which may be different for a homogeoenous extended expansionp. More... | |
const std::shared_ptr< LocalRegions::ExpansionVector > | GetExp () const |
This function returns the vector of elements in the expansion. More... | |
LocalRegions::ExpansionSharedPtr & | GetExp (int n) const |
This function returns (a shared pointer to) the local elemental expansion of the \(n^{\mathrm{th}}\) element. More... | |
LocalRegions::ExpansionSharedPtr & | GetExp (const Array< OneD, const NekDouble > &gloCoord) |
This function returns (a shared pointer to) the local elemental expansion containing the arbitrary point given by gloCoord. More... | |
int | GetExpIndex (const Array< OneD, const NekDouble > &gloCoord, NekDouble tol=0.0, bool returnNearestElmt=false, int cachedId=-1, NekDouble maxDistance=1e6) |
This function returns the index of the local elemental expansion containing the arbitrary point given by gloCoord, within a distance tolerance of tol. More... | |
int | GetExpIndex (const Array< OneD, const NekDouble > &gloCoords, Array< OneD, NekDouble > &locCoords, NekDouble tol=0.0, bool returnNearestElmt=false, int cachedId=-1, NekDouble maxDistance=1e6) |
NekDouble | PhysEvaluate (const Array< OneD, const NekDouble > &coords, const Array< OneD, const NekDouble > &phys) |
int | GetCoeff_Offset (int n) const |
Get the start offset position for a global list of m_coeffs correspoinding to element n. More... | |
int | GetPhys_Offset (int n) const |
Get the start offset position for a global list of m_phys correspoinding to element n. More... | |
Array< OneD, NekDouble > & | UpdateCoeffs () |
This function returns (a reference to) the array \(\boldsymbol{\hat{u}}_l\) (implemented as m_coeffs) containing all local expansion coefficients. More... | |
Array< OneD, NekDouble > & | UpdatePhys () |
This function returns (a reference to) the array \(\boldsymbol{u}_l\) (implemented as m_phys) containing the function \(u^{\delta}(\boldsymbol{x})\) evaluated at the quadrature points. More... | |
void | PhysDeriv (Direction edir, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &out_d) |
void | PhysDeriv (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &out_d0, Array< OneD, NekDouble > &out_d1=NullNekDouble1DArray, Array< OneD, NekDouble > &out_d2=NullNekDouble1DArray) |
This function discretely evaluates the derivative of a function \(f(\boldsymbol{x})\) on the domain consisting of all elements of the expansion. More... | |
void | PhysDeriv (const int dir, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &out_d) |
void | CurlCurl (Array< OneD, Array< OneD, NekDouble > > &Vel, Array< OneD, Array< OneD, NekDouble > > &Q) |
void | PhysDirectionalDeriv (const Array< OneD, const NekDouble > &direction, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray) |
void | GetMovingFrames (const SpatialDomains::GeomMMF MMFdir, const Array< OneD, const NekDouble > &CircCentre, Array< OneD, Array< OneD, NekDouble > > &outarray) |
const Array< OneD, const std::shared_ptr< ExpList > > & | GetBndCondExpansions () |
const Array< OneD, const NekDouble > & | GetBndCondBwdWeight () |
Get the weight value for boundary conditions. More... | |
void | SetBndCondBwdWeight (const int index, const NekDouble value) |
Set the weight value for boundary conditions. More... | |
std::shared_ptr< ExpList > & | UpdateBndCondExpansion (int i) |
void | Upwind (const Array< OneD, const NekDouble > &Vn, const Array< OneD, const NekDouble > &Fwd, const Array< OneD, const NekDouble > &Bwd, Array< OneD, NekDouble > &Upwind) |
void | Upwind (const Array< OneD, const Array< OneD, NekDouble > > &Vec, const Array< OneD, const NekDouble > &Fwd, const Array< OneD, const NekDouble > &Bwd, Array< OneD, NekDouble > &Upwind) |
std::shared_ptr< ExpList > & | GetTrace () |
std::shared_ptr< AssemblyMapDG > & | GetTraceMap (void) |
const Array< OneD, const int > & | GetTraceBndMap (void) |
void | GetNormals (Array< OneD, Array< OneD, NekDouble > > &normals) |
void | GetElmtNormalLength (Array< OneD, NekDouble > &lengthsFwd, Array< OneD, NekDouble > &lengthsBwd) |
Get the length of elements in boundary normal direction. More... | |
void | GetBwdWeight (Array< OneD, NekDouble > &weightAver, Array< OneD, NekDouble > &weightJump) |
Get the weight value for boundary conditions for boundary average and jump calculations. More... | |
void | AddTraceIntegral (const Array< OneD, const NekDouble > &Fx, const Array< OneD, const NekDouble > &Fy, Array< OneD, NekDouble > &outarray) |
void | AddTraceIntegral (const Array< OneD, const NekDouble > &Fn, Array< OneD, NekDouble > &outarray) |
void | AddFwdBwdTraceIntegral (const Array< OneD, const NekDouble > &Fwd, const Array< OneD, const NekDouble > &Bwd, Array< OneD, NekDouble > &outarray) |
void | GetFwdBwdTracePhys (Array< OneD, NekDouble > &Fwd, Array< OneD, NekDouble > &Bwd) |
void | GetFwdBwdTracePhys (const Array< OneD, const NekDouble > &field, Array< OneD, NekDouble > &Fwd, Array< OneD, NekDouble > &Bwd, bool FillBnd=true, bool PutFwdInBwdOnBCs=false, bool DoExchange=true) |
void | FillBwdWithBoundCond (const Array< OneD, NekDouble > &Fwd, Array< OneD, NekDouble > &Bwd, bool PutFwdInBwdOnBCs=false) |
void | AddTraceQuadPhysToField (const Array< OneD, const NekDouble > &Fwd, const Array< OneD, const NekDouble > &Bwd, Array< OneD, NekDouble > &field) |
Add Fwd and Bwd value to field, a reverse procedure of GetFwdBwdTracePhys. More... | |
void | AddTraceQuadPhysToOffDiag (const Array< OneD, const NekDouble > &Fwd, const Array< OneD, const NekDouble > &Bwd, Array< OneD, NekDouble > &field) |
void | GetLocTraceFromTracePts (const Array< OneD, const NekDouble > &Fwd, const Array< OneD, const NekDouble > &Bwd, Array< OneD, NekDouble > &locTraceFwd, Array< OneD, NekDouble > &locTraceBwd) |
void | FillBwdWithBwdWeight (Array< OneD, NekDouble > &weightave, Array< OneD, NekDouble > &weightjmp) |
Fill Bwd with boundary conditions. More... | |
void | PeriodicBwdCopy (const Array< OneD, const NekDouble > &Fwd, Array< OneD, NekDouble > &Bwd) |
Copy and fill the Periodic boundaries. More... | |
const std::vector< bool > & | GetLeftAdjacentFaces (void) const |
void | ExtractTracePhys (Array< OneD, NekDouble > &outarray) |
void | ExtractTracePhys (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray) |
const Array< OneD, const SpatialDomains::BoundaryConditionShPtr > & | GetBndConditions () |
Array< OneD, SpatialDomains::BoundaryConditionShPtr > & | UpdateBndConditions () |
void | EvaluateBoundaryConditions (const NekDouble time=0.0, const std::string varName="", const NekDouble=NekConstants::kNekUnsetDouble, const NekDouble=NekConstants::kNekUnsetDouble) |
void | GeneralMatrixOp (const GlobalMatrixKey &gkey, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray) |
This function calculates the result of the multiplication of a matrix of type specified by mkey with a vector given by inarray. More... | |
void | GeneralMatrixOp_IterPerExp (const GlobalMatrixKey &gkey, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray) |
void | SetUpPhysNormals () |
void | GetBoundaryToElmtMap (Array< OneD, int > &ElmtID, Array< OneD, int > &EdgeID) |
void | GetBndElmtExpansion (int i, std::shared_ptr< ExpList > &result, const bool DeclareCoeffPhysArrays=true) |
void | ExtractElmtToBndPhys (int i, const Array< OneD, NekDouble > &elmt, Array< OneD, NekDouble > &boundary) |
void | ExtractPhysToBndElmt (int i, const Array< OneD, const NekDouble > &phys, Array< OneD, NekDouble > &bndElmt) |
void | ExtractPhysToBnd (int i, const Array< OneD, const NekDouble > &phys, Array< OneD, NekDouble > &bnd) |
void | GetBoundaryNormals (int i, Array< OneD, Array< OneD, NekDouble > > &normals) |
void | GeneralGetFieldDefinitions (std::vector< LibUtilities::FieldDefinitionsSharedPtr > &fielddef, int NumHomoDir=0, Array< OneD, LibUtilities::BasisSharedPtr > &HomoBasis=LibUtilities::NullBasisSharedPtr1DArray, std::vector< NekDouble > &HomoLen=LibUtilities::NullNekDoubleVector, bool homoStrips=false, std::vector< unsigned int > &HomoSIDs=LibUtilities::NullUnsignedIntVector, std::vector< unsigned int > &HomoZIDs=LibUtilities::NullUnsignedIntVector, std::vector< unsigned int > &HomoYIDs=LibUtilities::NullUnsignedIntVector) |
std::map< int, RobinBCInfoSharedPtr > | GetRobinBCInfo () |
void | GetPeriodicEntities (PeriodicMap &periodicVerts, PeriodicMap &periodicEdges, PeriodicMap &periodicFaces=NullPeriodicMap) |
std::vector< LibUtilities::FieldDefinitionsSharedPtr > | GetFieldDefinitions () |
void | GetFieldDefinitions (std::vector< LibUtilities::FieldDefinitionsSharedPtr > &fielddef) |
void | AppendFieldData (LibUtilities::FieldDefinitionsSharedPtr &fielddef, std::vector< NekDouble > &fielddata) |
Append the element data listed in elements fielddef->m_ElementIDs onto fielddata. More... | |
void | AppendFieldData (LibUtilities::FieldDefinitionsSharedPtr &fielddef, std::vector< NekDouble > &fielddata, Array< OneD, NekDouble > &coeffs) |
Append the data in coeffs listed in elements fielddef->m_ElementIDs onto fielddata. More... | |
void | ExtractElmtDataToCoeffs (LibUtilities::FieldDefinitionsSharedPtr &fielddef, std::vector< NekDouble > &fielddata, std::string &field, Array< OneD, NekDouble > &coeffs) |
Extract the data in fielddata into the coeffs using the basic ExpList Elemental expansions rather than planes in homogeneous case. More... | |
void | ExtractCoeffsToCoeffs (const std::shared_ptr< ExpList > &fromExpList, const Array< OneD, const NekDouble > &fromCoeffs, Array< OneD, NekDouble > &toCoeffs) |
Extract the data from fromField using fromExpList the coeffs using the basic ExpList Elemental expansions rather than planes in homogeneous case. More... | |
void | ExtractDataToCoeffs (LibUtilities::FieldDefinitionsSharedPtr &fielddef, std::vector< NekDouble > &fielddata, std::string &field, Array< OneD, NekDouble > &coeffs) |
Extract the data in fielddata into the coeffs. More... | |
void | GenerateElementVector (const int ElementID, const NekDouble scalar1, const NekDouble scalar2, Array< OneD, NekDouble > &outarray) |
Generate vector v such that v[i] = scalar1 if i is in the element < ElementID. Otherwise, v[i] = scalar2. More... | |
std::shared_ptr< ExpList > | GetSharedThisPtr () |
Returns a shared pointer to the current object. More... | |
std::shared_ptr< LibUtilities::SessionReader > | GetSession () const |
Returns the session object. More... | |
std::shared_ptr< LibUtilities::Comm > | GetComm () |
Returns the comm object. More... | |
SpatialDomains::MeshGraphSharedPtr | GetGraph () |
LibUtilities::BasisSharedPtr | GetHomogeneousBasis (void) |
std::shared_ptr< ExpList > & | GetPlane (int n) |
void | CreateCollections (Collections::ImplementationType ImpType=Collections::eNoImpType) |
Construct collections of elements containing a single element type and polynomial order from the list of expansions. More... | |
void | ClearGlobalLinSysManager (void) |
const Array< OneD, const std::pair< int, int > > & | GetCoeffsToElmt () const |
Get m_coeffs to elemental value map. More... | |
void | AddTraceJacToElmtJac (const Array< OneD, const DNekMatSharedPtr > &FwdMat, const Array< OneD, const DNekMatSharedPtr > &BwdMat, Array< OneD, DNekMatSharedPtr > &fieldMat) |
inverse process of v_GetFwdBwdTracePhys. Given Trace integration of Fwd and Bwd Jacobian, with dimension NtotalTrace*TraceCoef*TracePhys. return Elemental Jacobian matrix with dimension NtotalElement*ElementCoef*ElementPhys. More... | |
void | GetMatIpwrtDeriveBase (const Array< OneD, const Array< OneD, NekDouble > > &inarray, const int nDirctn, Array< OneD, DNekMatSharedPtr > &mtxPerVar) |
void | GetMatIpwrtDeriveBase (const TensorOfArray3D< NekDouble > &inarray, Array< OneD, DNekMatSharedPtr > &mtxPerVar) |
void | GetDiagMatIpwrtBase (const Array< OneD, const Array< OneD, NekDouble > > &inarray, Array< OneD, DNekMatSharedPtr > &mtxPerVar) |
void | AddTraceIntegralToOffDiag (const Array< OneD, const NekDouble > &FwdFlux, const Array< OneD, const NekDouble > &BwdFlux, Array< OneD, NekDouble > &outarray) |
void | AddRightIPTPhysDerivBase (const int dir, const Array< OneD, const DNekMatSharedPtr > ElmtJacQuad, Array< OneD, DNekMatSharedPtr > ElmtJacCoef) |
void | AddRightIPTBaseMatrix (const Array< OneD, const DNekMatSharedPtr > ElmtJacQuad, Array< OneD, DNekMatSharedPtr > ElmtJacCoef) |
const LocTraceToTraceMapSharedPtr & | GetLocTraceToTraceMap () const |
Protected Member Functions | |
void | GlobalSolve (const GlobalLinSysKey &key, const Array< OneD, const NekDouble > &rhs, Array< OneD, NekDouble > &inout, const Array< OneD, const NekDouble > &dirForcing=NullNekDouble1DArray) |
Solves the linear system specified by the key key. More... | |
GlobalMatrixSharedPtr | GetGlobalMatrix (const GlobalMatrixKey &mkey) |
Returns the global matrix specified by mkey. More... | |
GlobalLinSysSharedPtr | GetGlobalLinSys (const GlobalLinSysKey &mkey) |
Returns the linear system specified by the key mkey. More... | |
GlobalLinSysSharedPtr | GenGlobalLinSys (const GlobalLinSysKey &mkey) |
virtual void | v_ImposeDirichletConditions (Array< OneD, NekDouble > &outarray) |
Impose the Dirichlet Boundary Conditions on outarray. More... | |
virtual void | v_FillBndCondFromField () |
virtual void | v_FillBndCondFromField (const int nreg) |
virtual void | v_LocalToGlobal (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, bool useComm) |
Gathers the global coefficients \(\boldsymbol{\hat{u}}_g\) from the local coefficients \(\boldsymbol{\hat{u}}_l\). More... | |
virtual void | v_LocalToGlobal (bool useComm) |
virtual void | v_GlobalToLocal (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray) |
Scatters from the global coefficients \(\boldsymbol{\hat{u}}_g\) to the local coefficients \(\boldsymbol{\hat{u}}_l\). More... | |
virtual void | v_GlobalToLocal (void) |
virtual void | v_FwdTrans (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray) |
Template method virtual forwarder for FwdTrans(). More... | |
virtual void | v_SmoothField (Array< OneD, NekDouble > &field) |
Template method virtual forwarded for SmoothField(). More... | |
virtual void | v_MultiplyByInvMassMatrix (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray) |
Template method virtual forwarder for MultiplyByInvMassMatrix(). More... | |
virtual void | v_HelmSolve (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdRegions::ConstFactorMap &factors, const StdRegions::VarCoeffMap &varcoeff, const MultiRegions::VarFactorsMap &varfactors, const Array< OneD, const NekDouble > &dirForcing, const bool PhysSpaceForcing) |
Solves the two-dimensional Helmholtz equation, subject to the boundary conditions specified. More... | |
virtual void | v_GeneralMatrixOp (const GlobalMatrixKey &gkey, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray) |
Calculates the result of the multiplication of a global matrix of type specified by mkey with a vector given by inarray. More... | |
virtual void | v_LinearAdvectionDiffusionReactionSolve (const Array< OneD, Array< OneD, NekDouble > > &velocity, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const NekDouble lambda, const Array< OneD, const NekDouble > &dirForcing=NullNekDouble1DArray) |
void | v_LinearAdvectionReactionSolve (const Array< OneD, Array< OneD, NekDouble > > &velocity, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const NekDouble lambda, const Array< OneD, const NekDouble > &dirForcing=NullNekDouble1DArray) |
virtual const Array< OneD, const SpatialDomains ::BoundaryConditionShPtr > & | v_GetBndConditions () |
Template method virtual forwarder for GetBndConditions(). More... | |
virtual void | v_ClearGlobalLinSysManager (void) |
![]() | |
void | GenerateBoundaryConditionExpansion (const SpatialDomains::MeshGraphSharedPtr &graph1D, const SpatialDomains::BoundaryConditions &bcs, const std::string variable, const bool DeclareCoeffPhysArrays=true) |
Discretises the boundary conditions. More... | |
void | FindPeriodicTraces (const SpatialDomains::BoundaryConditions &bcs, const std::string variable) |
Generate a associative map of periodic vertices in a mesh. More... | |
virtual ExpListSharedPtr & | v_GetTrace () |
virtual AssemblyMapDGSharedPtr & | v_GetTraceMap (void) |
virtual const LocTraceToTraceMapSharedPtr & | v_GetLocTraceToTraceMap (void) const |
virtual void | v_AddTraceIntegral (const Array< OneD, const NekDouble > &Fn, Array< OneD, NekDouble > &outarray) |
Add trace contributions into elemental coefficient spaces. More... | |
virtual void | v_AddFwdBwdTraceIntegral (const Array< OneD, const NekDouble > &Fwd, const Array< OneD, const NekDouble > &Bwd, Array< OneD, NekDouble > &outarray) |
Add trace contributions into elemental coefficient spaces. More... | |
virtual void | v_AddTraceQuadPhysToField (const Array< OneD, const NekDouble > &Fwd, const Array< OneD, const NekDouble > &Bwd, Array< OneD, NekDouble > &field) |
virtual void | v_ExtractTracePhys (Array< OneD, NekDouble > &outarray) |
virtual void | v_ExtractTracePhys (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray) |
This method extracts the trace (verts in 1D) from the field inarray and puts the values in outarray. More... | |
virtual void | v_GetLocTraceFromTracePts (const Array< OneD, const NekDouble > &Fwd, const Array< OneD, const NekDouble > &Bwd, Array< OneD, NekDouble > &locTraceFwd, Array< OneD, NekDouble > &locTraceBwd) |
void | GenerateFieldBnd1D (SpatialDomains::BoundaryConditions &bcs, const std::string variable) |
virtual std::map< int, RobinBCInfoSharedPtr > | v_GetRobinBCInfo () |
virtual const Array< OneD, const MultiRegions::ExpListSharedPtr > & | v_GetBndCondExpansions () |
virtual MultiRegions::ExpListSharedPtr & | v_UpdateBndCondExpansion (int i) |
virtual Array< OneD, SpatialDomains::BoundaryConditionShPtr > & | v_UpdateBndConditions () |
virtual void | v_GetBoundaryToElmtMap (Array< OneD, int > &ElmtID, Array< OneD, int > &TraceID) |
virtual void | v_GetBndElmtExpansion (int i, std::shared_ptr< ExpList > &result, const bool DeclareCoeffPhysArrays) |
virtual void | v_Reset () |
Reset this field, so that geometry information can be updated. More... | |
virtual void | v_EvaluateBoundaryConditions (const NekDouble time=0.0, const std::string varName="", const NekDouble x2_in=NekConstants::kNekUnsetDouble, const NekDouble x3_in=NekConstants::kNekUnsetDouble) |
Evaluate all boundary conditions at a given time.. More... | |
virtual void | v_PeriodicBwdCopy (const Array< OneD, const NekDouble > &Fwd, Array< OneD, NekDouble > &Bwd) |
virtual void | v_FillBwdWithBwdWeight (Array< OneD, NekDouble > &weightave, Array< OneD, NekDouble > &weightjmp) |
Fill the weight with m_bndCondBndWeight. More... | |
virtual void | v_GetFwdBwdTracePhys (Array< OneD, NekDouble > &Fwd, Array< OneD, NekDouble > &Bwd) |
virtual void | v_GetFwdBwdTracePhys (const Array< OneD, const NekDouble > &field, Array< OneD, NekDouble > &Fwd, Array< OneD, NekDouble > &Bwd, bool FillBnd=true, bool PutFwdInBwdOnBCs=false, bool DoExchange=true) |
This method extracts the "forward" and "backward" trace data from the array field and puts the data into output vectors Fwd and Bwd. More... | |
virtual void | v_FillBwdWithBoundCond (const Array< OneD, NekDouble > &Fwd, Array< OneD, NekDouble > &Bwd, bool PutFwdInBwdOnBCs) |
virtual const Array< OneD, const NekDouble > & | v_GetBndCondBwdWeight () |
virtual void | v_SetBndCondBwdWeight (const int index, const NekDouble value) |
void | SetUpDG (const std::string="DefaultVar") |
Set up all DG member variables and maps. More... | |
bool | IsLeftAdjacentTrace (const int n, const int e) |
virtual void | v_GetPeriodicEntities (PeriodicMap &periodicVerts, PeriodicMap &periodicEdges, PeriodicMap &periodicFaces) |
Obtain a copy of the periodic edges and vertices for this field. More... | |
![]() | |
std::shared_ptr< DNekMat > | GenGlobalMatrixFull (const GlobalLinSysKey &mkey, const std::shared_ptr< AssemblyMapCG > &locToGloMap) |
const DNekScalBlkMatSharedPtr | GenBlockMatrix (const GlobalMatrixKey &gkey) |
This function assembles the block diagonal matrix of local matrices of the type mtype. More... | |
const DNekScalBlkMatSharedPtr & | GetBlockMatrix (const GlobalMatrixKey &gkey) |
void | MultiplyByBlockMatrix (const GlobalMatrixKey &gkey, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray) |
std::shared_ptr< GlobalMatrix > | GenGlobalMatrix (const GlobalMatrixKey &mkey, const std::shared_ptr< AssemblyMapCG > &locToGloMap) |
Generates a global matrix from the given key and map. More... | |
void | GlobalEigenSystem (const std::shared_ptr< DNekMat > &Gmat, Array< OneD, NekDouble > &EigValsReal, Array< OneD, NekDouble > &EigValsImag, Array< OneD, NekDouble > &EigVecs=NullNekDouble1DArray) |
std::shared_ptr< GlobalLinSys > | GenGlobalLinSys (const GlobalLinSysKey &mkey, const std::shared_ptr< AssemblyMapCG > &locToGloMap) |
This operation constructs the global linear system of type mkey. More... | |
std::shared_ptr< GlobalLinSys > | GenGlobalBndLinSys (const GlobalLinSysKey &mkey, const AssemblyMapSharedPtr &locToGloMap) |
Generate a GlobalLinSys from information provided by the key "mkey" and the mapping provided in LocToGloBaseMap. More... | |
virtual int | v_GetNumElmts (void) |
virtual void | v_Upwind (const Array< OneD, const Array< OneD, NekDouble > > &Vec, const Array< OneD, const NekDouble > &Fwd, const Array< OneD, const NekDouble > &Bwd, Array< OneD, NekDouble > &Upwind) |
virtual void | v_Upwind (const Array< OneD, const NekDouble > &Vn, const Array< OneD, const NekDouble > &Fwd, const Array< OneD, const NekDouble > &Bwd, Array< OneD, NekDouble > &Upwind) |
virtual const Array< OneD, const int > & | v_GetTraceBndMap () |
virtual void | v_GetNormals (Array< OneD, Array< OneD, NekDouble > > &normals) |
Populate normals with the normals of all expansions. More... | |
virtual void | v_AddTraceIntegral (const Array< OneD, const NekDouble > &Fx, const Array< OneD, const NekDouble > &Fy, Array< OneD, NekDouble > &outarray) |
virtual void | v_AddTraceQuadPhysToOffDiag (const Array< OneD, const NekDouble > &Fwd, const Array< OneD, const NekDouble > &Bwd, Array< OneD, NekDouble > &field) |
virtual const std::vector< bool > & | v_GetLeftAdjacentFaces (void) const |
virtual void | v_BwdTrans (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray) |
virtual void | v_BwdTrans_IterPerExp (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray) |
virtual void | v_FwdTrans_IterPerExp (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray) |
virtual void | v_FwdTrans_BndConstrained (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray) |
virtual void | v_IProductWRTBase (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray) |
virtual void | v_IProductWRTBase_IterPerExp (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray) |
virtual void | v_GetCoords (Array< OneD, NekDouble > &coord_0, Array< OneD, NekDouble > &coord_1, Array< OneD, NekDouble > &coord_2=NullNekDouble1DArray) |
virtual void | v_PhysDeriv (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &out_d0, Array< OneD, NekDouble > &out_d1, Array< OneD, NekDouble > &out_d2) |
virtual void | v_PhysDeriv (const int dir, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &out_d) |
virtual void | v_PhysDeriv (Direction edir, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &out_d) |
virtual void | v_CurlCurl (Array< OneD, Array< OneD, NekDouble > > &Vel, Array< OneD, Array< OneD, NekDouble > > &Q) |
virtual void | v_PhysDirectionalDeriv (const Array< OneD, const NekDouble > &direction, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray) |
virtual void | v_GetMovingFrames (const SpatialDomains::GeomMMF MMFdir, const Array< OneD, const NekDouble > &CircCentre, Array< OneD, Array< OneD, NekDouble > > &outarray) |
virtual void | v_HomogeneousFwdTrans (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, bool Shuff=true, bool UnShuff=true) |
virtual void | v_HomogeneousBwdTrans (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, bool Shuff=true, bool UnShuff=true) |
virtual void | v_DealiasedProd (const Array< OneD, NekDouble > &inarray1, const Array< OneD, NekDouble > &inarray2, Array< OneD, NekDouble > &outarray) |
virtual void | v_DealiasedDotProd (const Array< OneD, Array< OneD, NekDouble > > &inarray1, const Array< OneD, Array< OneD, NekDouble > > &inarray2, Array< OneD, Array< OneD, NekDouble > > &outarray) |
virtual void | v_GetBCValues (Array< OneD, NekDouble > &BndVals, const Array< OneD, NekDouble > &TotField, int BndID) |
virtual void | v_NormVectorIProductWRTBase (Array< OneD, const NekDouble > &V1, Array< OneD, const NekDouble > &V2, Array< OneD, NekDouble > &outarray, int BndID) |
virtual void | v_NormVectorIProductWRTBase (Array< OneD, Array< OneD, NekDouble > > &V, Array< OneD, NekDouble > &outarray) |
virtual void | v_SetUpPhysNormals () |
virtual void | v_ExtractElmtToBndPhys (const int i, const Array< OneD, NekDouble > &elmt, Array< OneD, NekDouble > &boundary) |
virtual void | v_ExtractPhysToBndElmt (const int i, const Array< OneD, const NekDouble > &phys, Array< OneD, NekDouble > &bndElmt) |
virtual void | v_ExtractPhysToBnd (const int i, const Array< OneD, const NekDouble > &phys, Array< OneD, NekDouble > &bnd) |
virtual void | v_GetBoundaryNormals (int i, Array< OneD, Array< OneD, NekDouble > > &normals) |
virtual std::vector< LibUtilities::FieldDefinitionsSharedPtr > | v_GetFieldDefinitions (void) |
virtual void | v_GetFieldDefinitions (std::vector< LibUtilities::FieldDefinitionsSharedPtr > &fielddef) |
virtual void | v_AppendFieldData (LibUtilities::FieldDefinitionsSharedPtr &fielddef, std::vector< NekDouble > &fielddata) |
virtual void | v_AppendFieldData (LibUtilities::FieldDefinitionsSharedPtr &fielddef, std::vector< NekDouble > &fielddata, Array< OneD, NekDouble > &coeffs) |
virtual void | v_ExtractDataToCoeffs (LibUtilities::FieldDefinitionsSharedPtr &fielddef, std::vector< NekDouble > &fielddata, std::string &field, Array< OneD, NekDouble > &coeffs) |
Extract data from raw field data into expansion list. More... | |
virtual void | v_ExtractCoeffsToCoeffs (const std::shared_ptr< ExpList > &fromExpList, const Array< OneD, const NekDouble > &fromCoeffs, Array< OneD, NekDouble > &toCoeffs) |
virtual void | v_WriteTecplotHeader (std::ostream &outfile, std::string var="") |
virtual void | v_WriteTecplotZone (std::ostream &outfile, int expansion) |
virtual void | v_WriteTecplotField (std::ostream &outfile, int expansion) |
virtual void | v_WriteTecplotConnectivity (std::ostream &outfile, int expansion) |
virtual void | v_WriteVtkPieceHeader (std::ostream &outfile, int expansion, int istrip) |
virtual void | v_WriteVtkPieceData (std::ostream &outfile, int expansion, std::string var) |
virtual NekDouble | v_L2 (const Array< OneD, const NekDouble > &phys, const Array< OneD, const NekDouble > &soln=NullNekDouble1DArray) |
virtual NekDouble | v_Integral (const Array< OneD, const NekDouble > &inarray) |
virtual NekDouble | v_VectorFlux (const Array< OneD, Array< OneD, NekDouble > > &inarray) |
virtual Array< OneD, const NekDouble > | v_HomogeneousEnergy (void) |
virtual LibUtilities::TranspositionSharedPtr | v_GetTransposition (void) |
virtual NekDouble | v_GetHomoLen (void) |
virtual void | v_SetHomoLen (const NekDouble lhom) |
virtual Array< OneD, const unsigned int > | v_GetZIDs (void) |
virtual Array< OneD, const unsigned int > | v_GetYIDs (void) |
virtual void | v_PhysInterp1DScaled (const NekDouble scale, const Array< OneD, NekDouble > &inarray, Array< OneD, NekDouble > &outarray) |
virtual void | v_PhysGalerkinProjection1DScaled (const NekDouble scale, const Array< OneD, NekDouble > &inarray, Array< OneD, NekDouble > &outarray) |
void | ExtractFileBCs (const std::string &fileName, LibUtilities::CommSharedPtr comm, const std::string &varName, const std::shared_ptr< ExpList > locExpList) |
Protected Attributes | |
AssemblyMapCGSharedPtr | m_locToGloMap |
(A shared pointer to) the object which contains all the required information for the transformation from local to global degrees of freedom. More... | |
GlobalMatrixMapShPtr | m_globalMat |
(A shared pointer to) a list which collects all the global matrices being assembled, such that they should be constructed only once. More... | |
LibUtilities::NekManager< GlobalLinSysKey, GlobalLinSys > | m_globalLinSysManager |
A manager which collects all the global linear systems being assembled, such that they should be constructed only once. More... | |
![]() | |
int | m_numDirBndCondExpansions |
The number of boundary segments on which Dirichlet boundary conditions are imposed. More... | |
Array< OneD, MultiRegions::ExpListSharedPtr > | m_bndCondExpansions |
An object which contains the discretised boundary conditions. More... | |
Array< OneD, NekDouble > | m_bndCondBndWeight |
Array< OneD, SpatialDomains::BoundaryConditionShPtr > | m_bndConditions |
An array which contains the information about the boundary condition on the different boundary regions. More... | |
GlobalLinSysMapShPtr | m_globalBndMat |
Global boundary matrix. More... | |
ExpListSharedPtr | m_trace |
Trace space storage for points between elements. More... | |
AssemblyMapDGSharedPtr | m_traceMap |
Local to global DG mapping for trace space. More... | |
std::set< int > | m_boundaryTraces |
A set storing the global IDs of any boundary Verts. More... | |
PeriodicMap | m_periodicVerts |
A map which identifies groups of periodic vertices. More... | |
PeriodicMap | m_periodicEdges |
A map which identifies pairs of periodic edges. More... | |
PeriodicMap | m_periodicFaces |
A map which identifies pairs of periodic faces. More... | |
std::vector< int > | m_periodicFwdCopy |
A vector indicating degress of freedom which need to be copied from forwards to backwards space in case of a periodic boundary condition. More... | |
std::vector< int > | m_periodicBwdCopy |
std::vector< bool > | m_leftAdjacentTraces |
LocTraceToTraceMapSharedPtr | m_locTraceToTraceMap |
![]() | |
ExpansionType | m_expType |
Exapnsion type. More... | |
LibUtilities::CommSharedPtr | m_comm |
Communicator. More... | |
LibUtilities::SessionReaderSharedPtr | m_session |
Session. More... | |
SpatialDomains::MeshGraphSharedPtr | m_graph |
Mesh associated with this expansion list. More... | |
int | m_ncoeffs |
The total number of local degrees of freedom. m_ncoeffs \(=N_{\mathrm{eof}}=\sum_{e=1}^{{N_{\mathrm{el}}}}N^{e}_l\). More... | |
int | m_npoints |
Array< OneD, NekDouble > | m_coeffs |
Concatenation of all local expansion coefficients. More... | |
Array< OneD, NekDouble > | m_phys |
The global expansion evaluated at the quadrature points. More... | |
bool | m_physState |
The state of the array m_phys. More... | |
std::shared_ptr< LocalRegions::ExpansionVector > | m_exp |
The list of local expansions. More... | |
Collections::CollectionVector | m_collections |
std::vector< bool > | m_collectionsDoInit |
Vector of bools to act as an initialise on first call flag. More... | |
std::vector< int > | m_coll_coeff_offset |
Offset of elemental data into the array m_coeffs. More... | |
std::vector< int > | m_coll_phys_offset |
Offset of elemental data into the array m_phys. More... | |
Array< OneD, int > | m_coeff_offset |
Offset of elemental data into the array m_coeffs. More... | |
Array< OneD, int > | m_phys_offset |
Offset of elemental data into the array m_phys. More... | |
Array< OneD, std::pair< int, int > > | m_coeffsToElmt |
m_coeffs to elemental value map More... | |
BlockMatrixMapShPtr | m_blockMat |
bool | m_WaveSpace |
std::unordered_map< int, int > | m_elmtToExpId |
Mapping from geometry ID of element to index inside m_exp. More... | |
Additional Inherited Members | |
![]() | |
Array< OneD, int > | m_BCtoElmMap |
Array< OneD, int > | m_BCtoTraceMap |
![]() | |
static SpatialDomains::BoundaryConditionShPtr | GetBoundaryCondition (const SpatialDomains::BoundaryConditionCollection &collection, unsigned int index, const std::string &variable) |
This class is the abstraction of a global continuous two- dimensional spectral/hp element expansion which approximates the solution of a set of partial differential equations.
The class ContField is able to incorporate the boundary conditions imposed to the problem to be solved. Therefore, the class is equipped with three additional data members:
The first data structure, m_bndCondExpansions, contains the one-dimensional spectral/hp expansion on the boundary, #m_bndTypes stores information about the type of boundary condition on the different parts of the boundary while #m_bndCondEquations holds the equation of the imposed boundary conditions.
Furthermore, in case of Dirichlet boundary conditions, this class is capable of lifting a known solution satisfying these boundary conditions. If we denote the unknown solution by \(u^{\mathcal{H}}(\boldsymbol{x})\) and the known Dirichlet boundary conditions by \(u^{\mathcal{D}}(\boldsymbol{x})\), the expansion then can be decomposed as
\[ u^{\delta}(\boldsymbol{x}_i)=u^{\mathcal{D}}(\boldsymbol{x}_i)+ u^{\mathcal{H}}(\boldsymbol{x}_i)=\sum_{n=0}^{N^{\mathcal{D}}-1} \hat{u}_n^{\mathcal{D}}\Phi_n(\boldsymbol{x}_i)+ \sum_{n={N^{\mathcal{D}}}}^{N_{\mathrm{dof}}-1} \hat{u}_n^{\mathcal{H}} \Phi_n(\boldsymbol{x}_i).\]
This lifting is accomplished by ordering the known global degrees of freedom, prescribed by the Dirichlet boundary conditions, first in the global array \(\boldsymbol{\hat{u}}\), that is,
\[\boldsymbol{\hat{u}}=\left[ \begin{array}{c} \boldsymbol{\hat{u}}^{\mathcal{D}}\\ \boldsymbol{\hat{u}}^{\mathcal{H}} \end{array} \right].\]
Such kind of expansions are also referred to as continuous fields. This class should be used when solving 2D problems using a standard Galerkin approach.
Definition at line 55 of file ContField.h.
Nektar::MultiRegions::ContField::ContField | ( | ) |
The default constructor.
Definition at line 88 of file ContField.cpp.
Nektar::MultiRegions::ContField::ContField | ( | const LibUtilities::SessionReaderSharedPtr & | pSession, |
const SpatialDomains::MeshGraphSharedPtr & | graph, | ||
const std::string & | variable = "DefaultVar" , |
||
const bool | DeclareCoeffPhysArrays = true , |
||
const bool | CheckIfSingularSystem = false , |
||
const Collections::ImplementationType | ImpType = Collections::eNoImpType |
||
) |
This constructor sets up global continuous field based on an input mesh and boundary conditions.
Given a mesh graph, containing information about the domain and the spectral/hp element expansion, this constructor fills the list of local expansions m_exp with the proper expansions, calculates the total number of quadrature points \(\boldsymbol{x}_i\) and local expansion coefficients \(\hat{u}^e_n\) and allocates memory for the arrays m_coeffs and m_phys. Furthermore, it constructs the mapping array (contained in m_locToGloMap) for the transformation between local elemental level and global level, it calculates the total number global expansion coefficients \(\hat{u}_n\) and allocates memory for the array #m_contCoeffs. The constructor also discretises the boundary conditions, specified by the argument bcs, by expressing them in terms of the coefficient of the expansion on the boundary.
graph | A mesh, containing information about the domain and the spectral/hp element expansion. |
bcs | The boundary conditions. |
variable | An optional parameter to indicate for which variable the field should be constructed. |
Definition at line 121 of file ContField.cpp.
References Nektar::MemoryManager< DataType >::AllocateSharedPtr(), Nektar::MultiRegions::DisContField::m_bndCondExpansions, Nektar::MultiRegions::DisContField::m_bndConditions, m_locToGloMap, Nektar::MultiRegions::ExpList::m_ncoeffs, Nektar::MultiRegions::DisContField::m_periodicEdges, Nektar::MultiRegions::DisContField::m_periodicFaces, Nektar::MultiRegions::DisContField::m_periodicVerts, and Nektar::MultiRegions::ExpList::m_session.
Nektar::MultiRegions::ContField::ContField | ( | const ContField & | In, |
const SpatialDomains::MeshGraphSharedPtr & | graph, | ||
const std::string & | variable, | ||
const bool | DeclareCoeffPhysArrays = true , |
||
const bool | CheckIfSingularSystem = false |
||
) |
Construct a global continuous field with solution type based on another field but using a separate input mesh and boundary conditions.
Given a mesh graph, containing information about the domain and the spectral/hp element expansion, this constructor fills the list of local expansions m_exp with the proper expansions, calculates the total number of quadrature points \(\boldsymbol{x}_i\) and local expansion coefficients \(\hat{u}^e_n\) and allocates memory for the arrays m_coeffs and m_phys. Furthermore, it constructs the mapping array (contained in m_locToGloMap) for the transformation between local elemental level and global level, it calculates the total number global expansion coefficients \(\hat{u}_n\) and allocates memory for the array m_coeffs. The constructor also discretises the boundary conditions, specified by the argument bcs, by expressing them in terms of the coefficient of the expansion on the boundary.
In | Existing ContField object used to provide the local to global mapping information and global solution type. |
graph | A mesh, containing information about the domain and the spectral/hp element expansion. |
bcs | The boundary conditions. |
bc_loc |
Definition at line 176 of file ContField.cpp.
References Nektar::MemoryManager< DataType >::AllocateSharedPtr(), Nektar::MultiRegions::DisContField::m_bndCondExpansions, Nektar::MultiRegions::DisContField::m_bndConditions, m_locToGloMap, Nektar::MultiRegions::ExpList::m_ncoeffs, Nektar::MultiRegions::DisContField::m_periodicEdges, Nektar::MultiRegions::DisContField::m_periodicFaces, Nektar::MultiRegions::DisContField::m_periodicVerts, Nektar::MultiRegions::ExpList::m_session, and Nektar::MultiRegions::DisContField::SameTypeOfBoundaryConditions().
Nektar::MultiRegions::ContField::ContField | ( | const ContField & | In, |
bool | DeclareCoeffPhysArrays = true |
||
) |
The copy constructor.
Initialises the object as a copy of an existing ContField object.
In | Existing ContField object. |
DeclareCoeffPhysArrays | bool to declare if m_phys and m_coeffs should be declared. Default is true |
Definition at line 217 of file ContField.cpp.
Nektar::MultiRegions::ContField::ContField | ( | const LibUtilities::SessionReaderSharedPtr & | pSession, |
const ExpList & | In | ||
) |
Copy constructor.
Constructs a continuous field as a copy of an existing explist field and adding all the boundary conditions.
In | Existing explist1D field . |
Definition at line 231 of file ContField.cpp.
References Nektar::MemoryManager< DataType >::AllocateSharedPtr(), m_locToGloMap, and Nektar::MultiRegions::ExpList::m_ncoeffs.
|
virtual |
|
inline |
Assembles the global coefficients \(\boldsymbol{\hat{u}}_g\) from the local coefficients \(\boldsymbol{\hat{u}}_l\).
This operation is evaluated as:
\begin{tabbing} \hspace{1cm} \= Do \= $e=$ $1, N_{\mathrm{el}}$ \\ \> \> Do \= $i=$ $0,N_m^e-1$ \\ \> \> \> $\boldsymbol{\hat{u}}_g[\mbox{map}[e][i]] = \boldsymbol{\hat{u}}_g[\mbox{map}[e][i]]+\mbox{sign}[e][i] \cdot \boldsymbol{\hat{u}}^{e}[i]$\\ \> \> continue\\ \> continue \end{tabbing}
where map \([e][i]\) is the mapping array and sign \([e][i]\) is an array of similar dimensions ensuring the correct modal connectivity between the different elements (both these arrays are contained in the data member m_locToGloMap). This operation is equivalent to the gather operation \(\boldsymbol{\hat{u}}_g=\mathcal{A}^{T}\boldsymbol{\hat{u}}_l\), where \(\mathcal{A}\) is the \(N_{\mathrm{eof}}\times N_{\mathrm{dof}}\) permutation matrix.
Definition at line 319 of file ContField.h.
References Nektar::MultiRegions::ExpList::m_coeffs, and m_locToGloMap.
|
inline |
Assembles the global coefficients \(\boldsymbol{\hat{u}}_g\) from the local coefficients \(\boldsymbol{\hat{u}}_l\).
This operation is evaluated as:
\begin{tabbing} \hspace{1cm} \= Do \= $e=$ $1, N_{\mathrm{el}}$ \\ \> \> Do \= $i=$ $0,N_m^e-1$ \\ \> \> \> $\boldsymbol{\hat{u}}_g[\mbox{map}[e][i]] = \boldsymbol{\hat{u}}_g[\mbox{map}[e][i]]+\mbox{sign}[e][i] \cdot \boldsymbol{\hat{u}}^{e}[i]$\\ \> \> continue\\ \> continue \end{tabbing}
where map \([e][i]\) is the mapping array and sign \([e][i]\) is an array of similar dimensions ensuring the correct modal connectivity between the different elements (both these arrays are contained in the data member m_locToGloMap). This operation is equivalent to the gather operation \(\boldsymbol{\hat{u}}_g=\mathcal{A}^{T}\boldsymbol{\hat{u}}_l\), where \(\mathcal{A}\) is the \(N_{\mathrm{eof}}\times N_{\mathrm{dof}}\) permutation matrix.
inarray | An array of size \(N_\mathrm{eof}\) containing the local degrees of freedom \(\boldsymbol{x}_l\). |
outarray | The resulting global degrees of freedom \(\boldsymbol{x}_g\) will be stored in this array of size \(N_\mathrm{dof}\). |
Definition at line 351 of file ContField.h.
References m_locToGloMap.
|
inline |
Performs the backward transformation of the spectral/hp element expansion.
Given the coefficients of an expansion, this function evaluates the spectral/hp expansion \(u^{\delta}(\boldsymbol{x})\) at the quadrature points \(\boldsymbol{x}_i\). This operation is evaluated locally by the function ExpList::BwdTrans.
The coefficients of the expansion should be contained in the variable m_coeffs of the ExpList object In. The resulting physical values at the quadrature points \(u^{\delta}(\boldsymbol{x}_i)\) are stored in the array m_phys.
Definition at line 403 of file ContField.h.
References Nektar::MultiRegions::ExpList::BwdTrans_IterPerExp().
Referenced by v_SmoothField().
void Nektar::MultiRegions::ContField::FwdTrans | ( | const Array< OneD, const NekDouble > & | inarray, |
Array< OneD, NekDouble > & | outarray | ||
) |
Performs the global forward transformation of a function \(f(\boldsymbol{x})\), subject to the boundary conditions specified.
Given a function \(f(\boldsymbol{x})\) defined at the quadrature points, this function determines the unknown global coefficients \(\boldsymbol{\hat{u}}^{\mathcal{H}}\) employing a discrete Galerkin projection from physical space to coefficient space. The operation is evaluated by the function GlobalSolve using the global mass matrix.
The values of the function \(f(\boldsymbol{x})\) evaluated at the quadrature points \(\boldsymbol{x}_i\) should be contained in the variable m_phys of the ExpList object Sin. The resulting global coefficients \(\hat{u}_g\) are stored in the array m_coeffs.
Sin | An ExpList, containing the discrete evaluation of \(f(\boldsymbol{x})\) at the quadrature points in its array m_phys. |
Definition at line 270 of file ContField.cpp.
References Nektar::StdRegions::eMass, GlobalSolve(), IProductWRTBase(), m_locToGloMap, and Nektar::MultiRegions::ExpList::m_ncoeffs.
Referenced by v_FwdTrans().
|
protected |
Definition at line 585 of file ContField.cpp.
References ASSERTL1, Nektar::MultiRegions::ExpList::GenGlobalLinSys(), Nektar::MultiRegions::GlobalMatrixKey::LocToGloMapIsDefined(), and m_locToGloMap.
|
inline |
Returns the boundary conditions expansion.
Definition at line 411 of file ContField.h.
References Nektar::MultiRegions::DisContField::m_bndCondExpansions.
|
inline |
Returns the boundary conditions.
Definition at line 417 of file ContField.h.
References Nektar::MultiRegions::DisContField::m_bndConditions.
Referenced by v_GetBndConditions().
|
protected |
Returns the linear system specified by the key mkey.
The function searches the map #m_globalLinSys to see if the global matrix has been created before. If not, it calls the function GenGlobalLinSys to generate the requested global system.
mkey | This key uniquely defines the requested linear system. |
Definition at line 579 of file ContField.cpp.
References m_globalLinSysManager.
Referenced by GlobalSolve().
|
protected |
Returns the global matrix specified by mkey.
Returns the global matrix associated with the given GlobalMatrixKey. If the global matrix has not yet been constructed on this field, it is first constructed using GenGlobalMatrix().
mkey | Global matrix key. |
Definition at line 547 of file ContField.cpp.
References ASSERTL1, Nektar::MultiRegions::ExpList::GenGlobalMatrix(), Nektar::MultiRegions::GlobalMatrixKey::LocToGloMapIsDefined(), m_globalMat, and m_locToGloMap.
|
inline |
Definition at line 422 of file ContField.h.
References ASSERTL1, Nektar::MultiRegions::GlobalMatrixKey::LocToGloMapIsDefined(), and m_globalMat.
|
inline |
Returns the map from local to global level.
Definition at line 360 of file ContField.h.
References m_locToGloMap.
|
protected |
Solves the linear system specified by the key key.
Given a linear system specified by the key key,
\[\boldsymbol{M}\boldsymbol{\hat{u}}_g=\boldsymbol{\hat{f}},\]
this function solves this linear system taking into account the boundary conditions specified in the data member m_bndCondExpansions. Therefore, it adds an array \(\boldsymbol{\hat{g}}\) which represents the non-zero surface integral resulting from the weak boundary conditions (e.g. Neumann boundary conditions) to the right hand side, that is,
\[\boldsymbol{M}\boldsymbol{\hat{u}}_g=\boldsymbol{\hat{f}}+ \boldsymbol{\hat{g}}.\]
Furthermore, it lifts the known degrees of freedom which are prescribed by the Dirichlet boundary conditions. As these known coefficients \(\boldsymbol{\hat{u}}^{\mathcal{D}}\) are numbered first in the global coefficient array \(\boldsymbol{\hat{u}}_g\), the linear system can be decomposed as,
\[\left[\begin{array}{cc} \boldsymbol{M}^{\mathcal{DD}}&\boldsymbol{M}^{\mathcal{DH}}\\ \boldsymbol{M}^{\mathcal{HD}}&\boldsymbol{M}^{\mathcal{HH}} \end{array}\right] \left[\begin{array}{c} \boldsymbol{\hat{u}}^{\mathcal{D}}\\ \boldsymbol{\hat{u}}^{\mathcal{H}} \end{array}\right]= \left[\begin{array}{c} \boldsymbol{\hat{f}}^{\mathcal{D}}\\ \boldsymbol{\hat{f}}^{\mathcal{H}} \end{array}\right]+ \left[\begin{array}{c} \boldsymbol{\hat{g}}^{\mathcal{D}}\\ \boldsymbol{\hat{g}}^{\mathcal{H}} \end{array}\right] \]
which will then be solved for the unknown coefficients \(\boldsymbol{\hat{u}}^{\mathcal{H}}\) as,
\[ \boldsymbol{M}^{\mathcal{HH}}\boldsymbol{\hat{u}}^{\mathcal{H}}= \boldsymbol{\hat{f}}^{\mathcal{H}}+ \boldsymbol{\hat{g}}^{\mathcal{H}}- \boldsymbol{M}^{\mathcal{HD}}\boldsymbol{\hat{u}}^{\mathcal{D}}\]
mkey | This key uniquely defines the linear system to be solved. |
locrhs | contains the forcing term in local coefficient space |
Definition at line 517 of file ContField.cpp.
References GetGlobalLinSys(), m_locToGloMap, and v_ImposeDirichletConditions().
Referenced by FwdTrans(), LaplaceSolve(), MultiplyByInvMassMatrix(), v_HelmSolve(), v_LinearAdvectionDiffusionReactionSolve(), and v_LinearAdvectionReactionSolve().
|
inline |
Calculates the inner product of a function \(f(\boldsymbol{x})\) with respect to all global expansion modes \(\phi_n^e(\boldsymbol{x})\).
The operation is evaluated locally (i.e. with respect to all local expansion modes) by the function ExpList::IProductWRTBase. The inner product with respect to the global expansion modes is than obtained by a global assembly operation.
The values of the function \(f(\boldsymbol{x})\) evaluated at the quadrature points \(\boldsymbol{x}_i\) should be contained in the variable m_phys of the ExpList object in. The result is stored in the array m_coeffs.
In | An ExpList, containing the discrete evaluation of \(f(\boldsymbol{x})\) at the quadrature points in its array m_phys. |
Definition at line 381 of file ContField.h.
References Nektar::MultiRegions::ExpList::IProductWRTBase_IterPerExp().
Referenced by FwdTrans(), LaplaceSolve(), v_HelmSolve(), v_LinearAdvectionDiffusionReactionSolve(), v_LinearAdvectionReactionSolve(), and v_SmoothField().
void Nektar::MultiRegions::ContField::LaplaceSolve | ( | const Array< OneD, const NekDouble > & | inarray, |
Array< OneD, NekDouble > & | outarray, | ||
const Array< OneD, const NekDouble > & | dirForcing = NullNekDouble1DArray , |
||
const Array< OneD, Array< OneD, NekDouble > > & | variablecoeffs = NullNekDoubleArrayOfArray , |
||
NekDouble | time = 0.0 |
||
) |
Solves the two-dimensional Laplace equation, subject to the boundary conditions specified.
Consider the two dimensional Laplace equation,
\[\nabla\cdot\left(\boldsymbol{\sigma}\nabla u(\boldsymbol{x})\right) = f(\boldsymbol{x}),\]
supplemented with appropriate boundary conditions (which are contained in the data member m_bndCondExpansions). In the equation above \(\boldsymbol{\sigma}\) is the (symmetric positive definite) diffusion tensor:
\[ \sigma = \left[ \begin{array}{cc} \sigma_{00}(\boldsymbol{x},t) & \sigma_{01}(\boldsymbol{x},t) \\ \sigma_{01}(\boldsymbol{x},t) & \sigma_{11}(\boldsymbol{x},t) \end{array} \right]. \]
Applying a \(C^0\) continuous Galerkin discretisation, this equation leads to the following linear system:
\[\boldsymbol{L} \boldsymbol{\hat{u}}_g=\boldsymbol{\hat{f}}\]
where \(\boldsymbol{L}\) is the Laplacian matrix. This function solves the system above for the global coefficients \(\boldsymbol{\hat{u}}\) by a call to the function GlobalSolve.
The values of the function \(f(\boldsymbol{x})\) evaluated at the quadrature points \(\boldsymbol{x}_i\) should be contained in the variable m_phys of the ExpList object Sin. The resulting global coefficients \(\boldsymbol{\hat{u}}_g\) are stored in the array m_coeffs.
Sin | An ExpList, containing the discrete evaluation of the forcing function \(f(\boldsymbol{x})\) at the quadrature points in its array m_phys. |
variablecoeffs | The (optional) parameter containing the coefficients evaluated at the quadrature points. It is an Array of (three) arrays which stores the laplacian coefficients in the following way \[\mathrm{variablecoeffs} = \left[ \begin{array}{c} \left[\sigma_{00}(\boldsymbol{x_i},t)\right]_i \\ \left[\sigma_{01}(\boldsymbol{x_i},t)\right]_i \\ \left[\sigma_{11}(\boldsymbol{x_i},t)\right]_i \end{array}\right] \] If this argument is not passed to the function, the following equation will be solved:\[\nabla^2u(\boldsymbol{x}) = f(\boldsymbol{x}),\] |
time | The time-level at which the coefficients are evaluated |
Definition at line 364 of file ContField.cpp.
References Nektar::StdRegions::eFactorTime, Nektar::StdRegions::eLaplacian, Nektar::SpatialDomains::eNeumann, Nektar::SpatialDomains::eRobin, Nektar::StdRegions::eVarCoeffD00, Nektar::StdRegions::eVarCoeffD01, Nektar::StdRegions::eVarCoeffD11, Nektar::StdRegions::eVarCoeffD22, Nektar::MultiRegions::ExpList::GetCoeffs(), Nektar::MultiRegions::ExpList::GetNcoeffs(), GlobalSolve(), IProductWRTBase(), Nektar::MultiRegions::DisContField::m_bndCondExpansions, Nektar::MultiRegions::DisContField::m_bndConditions, m_locToGloMap, Nektar::MultiRegions::ExpList::m_ncoeffs, Vmath::Neg(), and sign.
void Nektar::MultiRegions::ContField::LinearAdvectionEigs | ( | const NekDouble | ax, |
const NekDouble | ay, | ||
Array< OneD, NekDouble > & | Real, | ||
Array< OneD, NekDouble > & | Imag, | ||
Array< OneD, NekDouble > & | Evecs = NullNekDouble1DArray |
||
) |
Compute the eigenvalues of the linear advection operator.
Constructs the GlobalLinearSysKey for the linear advection operator with the supplied parameters, and computes the eigenvectors and eigenvalues of the associated matrix.
ax | Advection parameter, x. |
ay | Advection parameter, y. |
Real | Computed eigenvalues, real component. |
Imag | Computed eigenvalues, imag component. |
Evecs | Computed eigenvectors. |
Definition at line 443 of file ContField.cpp.
References CG_Iterations::ax, Nektar::StdRegions::eFactorTime, Nektar::StdRegions::eLinearAdvectionReaction, Nektar::StdRegions::eVarCoeffVelX, Nektar::StdRegions::eVarCoeffVelY, Nektar::MultiRegions::ExpList::GenGlobalMatrixFull(), m_locToGloMap, and Nektar::MultiRegions::ExpList::m_npoints.
void Nektar::MultiRegions::ContField::MultiplyByInvMassMatrix | ( | const Array< OneD, const NekDouble > & | inarray, |
Array< OneD, NekDouble > & | outarray | ||
) |
Multiply a solution by the inverse mass matrix.
Computes the matrix vector product \( \mathbf{y} = \mathbf{M}^{-1}\mathbf{x} \).
inarray | Input vector \(\mathbf{x}\). |
outarray | Output vector \(\mathbf{y}\). |
Definition at line 306 of file ContField.cpp.
References Nektar::StdRegions::eMass, GlobalSolve(), and m_locToGloMap.
Referenced by v_MultiplyByInvMassMatrix(), and v_SmoothField().
Reset the GlobalLinSys Manager
Reimplemented from Nektar::MultiRegions::ExpList.
Definition at line 1085 of file ContField.cpp.
References m_globalLinSysManager.
Reimplemented from Nektar::MultiRegions::ExpList.
Definition at line 678 of file ContField.cpp.
References Nektar::MultiRegions::ExpList::GetNcoeffs(), Nektar::MultiRegions::DisContField::m_bndCondExpansions, Nektar::MultiRegions::ExpList::m_coeffs, m_locToGloMap, and sign.
|
protectedvirtual |
Reimplemented from Nektar::MultiRegions::ExpList.
Definition at line 711 of file ContField.cpp.
References ASSERTL1, Nektar::MultiRegions::ExpList::GetNcoeffs(), Nektar::MultiRegions::DisContField::m_bndCondExpansions, Nektar::MultiRegions::ExpList::m_coeffs, m_locToGloMap, and sign.
|
protectedvirtual |
Template method virtual forwarder for FwdTrans().
Reimplemented from Nektar::MultiRegions::ExpList.
Definition at line 609 of file ContField.cpp.
References FwdTrans().
|
protectedvirtual |
Calculates the result of the multiplication of a global matrix of type specified by mkey with a vector given by inarray.
This is equivalent to the operation:
\[\boldsymbol{M\hat{u}}_g\]
where \(\boldsymbol{M}\) is the global matrix of type specified by mkey. After scattering the global array inarray to local level, this operation is evaluated locally by the function ExpList::GeneralMatrixOp. The global result is then obtained by a global assembly procedure.
mkey | This key uniquely defines the type matrix required for the operation. |
inarray | The vector \(\boldsymbol{\hat{u}}_g\) of size \(N_{\mathrm{dof}}\). |
outarray | The resulting vector of size \(N_{\mathrm{dof}}\). |
Reimplemented from Nektar::MultiRegions::ExpList.
Definition at line 953 of file ContField.cpp.
References Nektar::MultiRegions::ExpList::GeneralMatrixOp_IterPerExp().
|
protectedvirtual |
Template method virtual forwarder for GetBndConditions().
Reimplemented from Nektar::MultiRegions::DisContField.
Definition at line 1076 of file ContField.cpp.
References GetBndConditions().
|
protectedvirtual |
Scatters from the global coefficients \(\boldsymbol{\hat{u}}_g\) to the local coefficients \(\boldsymbol{\hat{u}}_l\).
This operation is evaluated as:
\begin{tabbing} \hspace{1cm} \= Do \= $e=$ $1, N_{\mathrm{el}}$ \\ \> \> Do \= $i=$ $0,N_m^e-1$ \\ \> \> \> $\boldsymbol{\hat{u}}^{e}[i] = \mbox{sign}[e][i] \cdot \boldsymbol{\hat{u}}_g[\mbox{map}[e][i]]$ \\ \> \> continue \\ \> continue \end{tabbing}
where map \([e][i]\) is the mapping array and sign \([e][i]\) is an array of similar dimensions ensuring the correct modal connectivity between the different elements (both these arrays are contained in the data member m_locToGloMap). This operation is equivalent to the scatter operation \(\boldsymbol{\hat{u}}_l=\mathcal{A}\boldsymbol{\hat{u}}_g\), where \(\mathcal{A}\) is the \(N_{\mathrm{eof}}\times N_{\mathrm{dof}}\) permutation matrix.
Reimplemented from Nektar::MultiRegions::ExpList.
Definition at line 773 of file ContField.cpp.
References m_locToGloMap.
Reimplemented from Nektar::MultiRegions::ExpList.
Definition at line 781 of file ContField.cpp.
References Nektar::MultiRegions::ExpList::m_coeffs, and m_locToGloMap.
|
protectedvirtual |
Solves the two-dimensional Helmholtz equation, subject to the boundary conditions specified.
Consider the two dimensional Helmholtz equation,
\[\nabla^2u(\boldsymbol{x})-\lambda u(\boldsymbol{x}) = f(\boldsymbol{x}),\]
supplemented with appropriate boundary conditions (which are contained in the data member m_bndCondExpansions). Applying a \(C^0\) continuous Galerkin discretisation, this equation leads to the following linear system:
\[\left(\boldsymbol{L}+\lambda\boldsymbol{M}\right) \boldsymbol{\hat{u}}_g=\boldsymbol{\hat{f}}\]
where \(\boldsymbol{L}\) and \(\boldsymbol{M}\) are the Laplacian and mass matrix respectively. This function solves the system above for the global coefficients \(\boldsymbol{\hat{u}}\) by a call to the function GlobalSolve. It is assumed #m_coeff contains an initial estimate for the solution.
The values of the function \(f(\boldsymbol{x})\) evaluated at the quadrature points \(\boldsymbol{x}_i\) should be contained in the variable m_phys of the ExpList object inarray.
inarray | An ExpList, containing the discrete evaluation of the forcing function \(f(\boldsymbol{x})\) at the quadrature points in its array m_phys. |
factors | The parameter \(\lambda\) of the Helmholtz equation is specified through the factors map |
Reimplemented from Nektar::MultiRegions::DisContField.
Definition at line 867 of file ContField.cpp.
References Nektar::StdRegions::eHelmholtz, Nektar::SpatialDomains::eNeumann, Nektar::SpatialDomains::eRobin, Nektar::MultiRegions::ExpList::GetCoeffs(), Nektar::MultiRegions::ExpList::GetNcoeffs(), GlobalSolve(), IProductWRTBase(), Nektar::MultiRegions::DisContField::m_bndCondExpansions, Nektar::MultiRegions::DisContField::m_bndConditions, m_locToGloMap, Nektar::MultiRegions::ExpList::m_ncoeffs, Vmath::Neg(), sign, and Vmath::Smul().
|
protectedvirtual |
Impose the Dirichlet Boundary Conditions on outarray.
Reimplemented from Nektar::MultiRegions::ExpList.
Definition at line 617 of file ContField.cpp.
References Nektar::SpatialDomains::eDirichlet, Nektar::MultiRegions::ExpList::GetCoeffs(), Nektar::MultiRegions::ExpList::GetNcoeffs(), Nektar::MultiRegions::DisContField::m_bndCondExpansions, Nektar::MultiRegions::DisContField::m_bndConditions, m_locToGloMap, and sign.
Referenced by GlobalSolve().
|
protectedvirtual |
First compute the inner product of forcing function with respect to base, and then solve the system with the linear advection operator.
velocity | Array of advection velocities in physical space |
inarray | Forcing function. |
outarray | Result. |
lambda | reaction coefficient |
dirForcing | Dirichlet Forcing. |
Reimplemented from Nektar::MultiRegions::ExpList.
Definition at line 972 of file ContField.cpp.
References Nektar::MultiRegions::e3D, Nektar::StdRegions::eFactorLambda, Nektar::StdRegions::eLinearAdvectionDiffusionReaction, Nektar::SpatialDomains::eNeumann, Nektar::SpatialDomains::eRobin, Nektar::StdRegions::eVarCoeffVelX, Nektar::StdRegions::eVarCoeffVelY, Nektar::StdRegions::eVarCoeffVelZ, Nektar::MultiRegions::ExpList::GetCoeffs(), Nektar::MultiRegions::ExpList::GetNcoeffs(), GlobalSolve(), IProductWRTBase(), Nektar::MultiRegions::DisContField::m_bndCondExpansions, Nektar::MultiRegions::DisContField::m_bndConditions, Nektar::MultiRegions::ExpList::m_expType, m_locToGloMap, Nektar::MultiRegions::ExpList::m_ncoeffs, Vmath::Neg(), and sign.
|
protectedvirtual |
First compute the inner product of forcing function with respect to base, and then solve the system with the linear advection operator.
velocity | Array of advection velocities in physical space |
inarray | Forcing function. |
outarray | Result. |
lambda | reaction coefficient |
dirForcing | Dirichlet Forcing. |
Reimplemented from Nektar::MultiRegions::ExpList.
Definition at line 1049 of file ContField.cpp.
References Nektar::StdRegions::eFactorLambda, Nektar::StdRegions::eLinearAdvectionReaction, Nektar::StdRegions::eVarCoeffVelX, Nektar::StdRegions::eVarCoeffVelY, GlobalSolve(), IProductWRTBase(), m_locToGloMap, and Nektar::MultiRegions::ExpList::m_ncoeffs.
|
protectedvirtual |
Reimplemented from Nektar::MultiRegions::ExpList.
Definition at line 824 of file ContField.cpp.
References Nektar::MultiRegions::ExpList::m_coeffs, and m_locToGloMap.
|
protectedvirtual |
Gathers the global coefficients \(\boldsymbol{\hat{u}}_g\) from the local coefficients \(\boldsymbol{\hat{u}}_l\).
This operation is evaluated as:
\begin{tabbing} \hspace{1cm} \= Do \= $e=$ $1, N_{\mathrm{el}}$ \\ \> \> Do \= $i=$ $0,N_m^e-1$ \\ \> \> \> $\boldsymbol{\hat{u}}_g[\mbox{map}[e][i]] = \mbox{sign}[e][i] \cdot \boldsymbol{\hat{u}}^{e}[i]$\\ \> \> continue\\ \> continue \end{tabbing}
where map \([e][i]\) is the mapping array and sign \([e][i]\) is an array of similar dimensions ensuring the correct modal connectivity between the different elements (both these arrays are contained in the data member m_locToGloMap). This operation is equivalent to the gather operation \(\boldsymbol{\hat{u}}_g=\mathcal{A}^{-1}\boldsymbol{\hat{u}}_l\), where \(\mathcal{A}\) is the \(N_{\mathrm{eof}}\times N_{\mathrm{dof}}\) permutation matrix.
Reimplemented from Nektar::MultiRegions::ExpList.
Definition at line 815 of file ContField.cpp.
References m_locToGloMap.
|
protectedvirtual |
Template method virtual forwarder for MultiplyByInvMassMatrix().
Reimplemented from Nektar::MultiRegions::ExpList.
Definition at line 833 of file ContField.cpp.
References MultiplyByInvMassMatrix().
|
protectedvirtual |
Template method virtual forwarded for SmoothField().
Reimplemented from Nektar::MultiRegions::ExpList.
Definition at line 287 of file ContField.cpp.
References BwdTrans(), IProductWRTBase(), m_locToGloMap, and MultiplyByInvMassMatrix().
|
protected |
A manager which collects all the global linear systems being assembled, such that they should be constructed only once.
Definition at line 177 of file ContField.h.
Referenced by GetGlobalLinSys(), and v_ClearGlobalLinSysManager().
|
protected |
(A shared pointer to) a list which collects all the global matrices being assembled, such that they should be constructed only once.
Definition at line 172 of file ContField.h.
Referenced by GetGlobalMatrix(), and GetGlobalMatrixNnz().
|
protected |
(A shared pointer to) the object which contains all the required information for the transformation from local to global degrees of freedom.
Definition at line 167 of file ContField.h.
Referenced by Assemble(), ContField(), FwdTrans(), GenGlobalLinSys(), GetGlobalMatrix(), GetLocalToGlobalMap(), GlobalSolve(), LaplaceSolve(), LinearAdvectionEigs(), MultiplyByInvMassMatrix(), v_FillBndCondFromField(), v_GlobalToLocal(), v_HelmSolve(), v_ImposeDirichletConditions(), v_LinearAdvectionDiffusionReactionSolve(), v_LinearAdvectionReactionSolve(), v_LocalToGlobal(), and v_SmoothField().