Nektar++
Public Member Functions | Static Public Member Functions | Static Public Attributes | Protected Member Functions | Protected Attributes | Friends | List of all members
Nektar::PulseWavePropagation Class Reference

#include <PulseWavePropagation.h>

Inheritance diagram for Nektar::PulseWavePropagation:
[legend]

Public Member Functions

virtual ~PulseWavePropagation ()
 
Array< OneD, NekDouble > & GetA0 ()
 
Array< OneD, NekDouble > & GetBeta ()
 
Array< OneD, NekDouble > & GetAlpha ()
 
Array< OneD, NekDouble > & GetN ()
 
NekDouble GetRho ()
 
NekDouble GetDomains ()
 
- Public Member Functions inherited from Nektar::PulseWaveSystem
virtual ~PulseWaveSystem ()
 Destructor. More...
 
int GetNdomains ()
 
Array< OneD, MultiRegions::ExpListSharedPtrUpdateVessels (void)
 
- Public Member Functions inherited from Nektar::SolverUtils::UnsteadySystem
virtual SOLVER_UTILS_EXPORT ~UnsteadySystem ()
 Destructor. More...
 
SOLVER_UTILS_EXPORT NekDouble GetTimeStep (const Array< OneD, const Array< OneD, NekDouble >> &inarray)
 Calculate the larger time-step mantaining the problem stable. More...
 
SOLVER_UTILS_EXPORT void SteadyStateResidual (int step, Array< OneD, NekDouble > &L2)
 
- Public Member Functions inherited from Nektar::SolverUtils::EquationSystem
virtual SOLVER_UTILS_EXPORT ~EquationSystem ()
 Destructor. More...
 
SOLVER_UTILS_EXPORT void SetUpTraceNormals (void)
 
SOLVER_UTILS_EXPORT void InitObject ()
 Initialises the members of this object. More...
 
SOLVER_UTILS_EXPORT void DoInitialise ()
 Perform any initialisation necessary before solving the problem. More...
 
SOLVER_UTILS_EXPORT void DoSolve ()
 Solve the problem. More...
 
SOLVER_UTILS_EXPORT void TransCoeffToPhys ()
 Transform from coefficient to physical space. More...
 
SOLVER_UTILS_EXPORT void TransPhysToCoeff ()
 Transform from physical to coefficient space. More...
 
SOLVER_UTILS_EXPORT void Output ()
 Perform output operations after solve. More...
 
SOLVER_UTILS_EXPORT NekDouble LinfError (unsigned int field, const Array< OneD, NekDouble > &exactsoln=NullNekDouble1DArray)
 Linf error computation. More...
 
SOLVER_UTILS_EXPORT std::string GetSessionName ()
 Get Session name. More...
 
template<class T >
std::shared_ptr< T > as ()
 
SOLVER_UTILS_EXPORT void ResetSessionName (std::string newname)
 Reset Session name. More...
 
SOLVER_UTILS_EXPORT LibUtilities::SessionReaderSharedPtr GetSession ()
 Get Session name. More...
 
SOLVER_UTILS_EXPORT MultiRegions::ExpListSharedPtr GetPressure ()
 Get pressure field if available. More...
 
SOLVER_UTILS_EXPORT void ExtraFldOutput (std::vector< Array< OneD, NekDouble > > &fieldcoeffs, std::vector< std::string > &variables)
 
SOLVER_UTILS_EXPORT void PrintSummary (std::ostream &out)
 Print a summary of parameters and solver characteristics. More...
 
SOLVER_UTILS_EXPORT void SetLambda (NekDouble lambda)
 Set parameter m_lambda. More...
 
SOLVER_UTILS_EXPORT SessionFunctionSharedPtr GetFunction (std::string name, const MultiRegions::ExpListSharedPtr &field=MultiRegions::NullExpListSharedPtr, bool cache=false)
 Get a SessionFunction by name. More...
 
SOLVER_UTILS_EXPORT void SetInitialConditions (NekDouble initialtime=0.0, bool dumpInitialConditions=true, const int domain=0)
 Initialise the data in the dependent fields. More...
 
SOLVER_UTILS_EXPORT void EvaluateExactSolution (int field, Array< OneD, NekDouble > &outfield, const NekDouble time)
 Evaluates an exact solution. More...
 
SOLVER_UTILS_EXPORT NekDouble L2Error (unsigned int field, const Array< OneD, NekDouble > &exactsoln, bool Normalised=false)
 Compute the L2 error between fields and a given exact solution. More...
 
SOLVER_UTILS_EXPORT NekDouble L2Error (unsigned int field, bool Normalised=false)
 Compute the L2 error of the fields. More...
 
SOLVER_UTILS_EXPORT Array< OneD, NekDoubleErrorExtraPoints (unsigned int field)
 Compute error (L2 and L_inf) over an larger set of quadrature points return [L2 Linf]. More...
 
SOLVER_UTILS_EXPORT void Checkpoint_Output (const int n)
 Write checkpoint file of m_fields. More...
 
SOLVER_UTILS_EXPORT void Checkpoint_Output (const int n, MultiRegions::ExpListSharedPtr &field, std::vector< Array< OneD, NekDouble > > &fieldcoeffs, std::vector< std::string > &variables)
 Write checkpoint file of custom data fields. More...
 
SOLVER_UTILS_EXPORT void Checkpoint_BaseFlow (const int n)
 Write base flow file of m_fields. More...
 
SOLVER_UTILS_EXPORT void WriteFld (const std::string &outname)
 Write field data to the given filename. More...
 
SOLVER_UTILS_EXPORT void WriteFld (const std::string &outname, MultiRegions::ExpListSharedPtr &field, std::vector< Array< OneD, NekDouble > > &fieldcoeffs, std::vector< std::string > &variables)
 Write input fields to the given filename. More...
 
SOLVER_UTILS_EXPORT void ImportFld (const std::string &infile, Array< OneD, MultiRegions::ExpListSharedPtr > &pFields)
 Input field data from the given file. More...
 
SOLVER_UTILS_EXPORT void ImportFldToMultiDomains (const std::string &infile, Array< OneD, MultiRegions::ExpListSharedPtr > &pFields, const int ndomains)
 Input field data from the given file to multiple domains. More...
 
SOLVER_UTILS_EXPORT void ImportFld (const std::string &infile, std::vector< std::string > &fieldStr, Array< OneD, Array< OneD, NekDouble > > &coeffs)
 Output a field. Input field data into array from the given file. More...
 
SOLVER_UTILS_EXPORT void ImportFld (const std::string &infile, MultiRegions::ExpListSharedPtr &pField, std::string &pFieldName)
 Output a field. Input field data into ExpList from the given file. More...
 
SOLVER_UTILS_EXPORT void SessionSummary (SummaryList &vSummary)
 Write out a session summary. More...
 
SOLVER_UTILS_EXPORT Array< OneD, MultiRegions::ExpListSharedPtr > & UpdateFields ()
 
SOLVER_UTILS_EXPORT LibUtilities::FieldMetaDataMapUpdateFieldMetaDataMap ()
 Get hold of FieldInfoMap so it can be updated. More...
 
SOLVER_UTILS_EXPORT NekDouble GetFinalTime ()
 Return final time. More...
 
SOLVER_UTILS_EXPORT int GetNcoeffs ()
 
SOLVER_UTILS_EXPORT int GetNcoeffs (const int eid)
 
SOLVER_UTILS_EXPORT int GetNumExpModes ()
 
SOLVER_UTILS_EXPORT const Array< OneD, int > GetNumExpModesPerExp ()
 
SOLVER_UTILS_EXPORT int GetNvariables ()
 
SOLVER_UTILS_EXPORT const std::string GetVariable (unsigned int i)
 
SOLVER_UTILS_EXPORT int GetTraceTotPoints ()
 
SOLVER_UTILS_EXPORT int GetTraceNpoints ()
 
SOLVER_UTILS_EXPORT int GetExpSize ()
 
SOLVER_UTILS_EXPORT int GetPhys_Offset (int n)
 
SOLVER_UTILS_EXPORT int GetCoeff_Offset (int n)
 
SOLVER_UTILS_EXPORT int GetTotPoints ()
 
SOLVER_UTILS_EXPORT int GetTotPoints (int n)
 
SOLVER_UTILS_EXPORT int GetNpoints ()
 
SOLVER_UTILS_EXPORT int GetSteps ()
 
SOLVER_UTILS_EXPORT NekDouble GetTimeStep ()
 
SOLVER_UTILS_EXPORT void CopyFromPhysField (const int i, Array< OneD, NekDouble > &output)
 
SOLVER_UTILS_EXPORT void CopyToPhysField (const int i, Array< OneD, NekDouble > &output)
 
SOLVER_UTILS_EXPORT void SetSteps (const int steps)
 
SOLVER_UTILS_EXPORT void ZeroPhysFields ()
 
SOLVER_UTILS_EXPORT void FwdTransFields ()
 
SOLVER_UTILS_EXPORT void SetModifiedBasis (const bool modbasis)
 
SOLVER_UTILS_EXPORT int GetCheckpointNumber ()
 
SOLVER_UTILS_EXPORT void SetCheckpointNumber (int num)
 
SOLVER_UTILS_EXPORT int GetCheckpointSteps ()
 
SOLVER_UTILS_EXPORT void SetCheckpointSteps (int num)
 
SOLVER_UTILS_EXPORT void SetTime (const NekDouble time)
 
SOLVER_UTILS_EXPORT void SetInitialStep (const int step)
 
SOLVER_UTILS_EXPORT void SetBoundaryConditions (NekDouble time)
 Evaluates the boundary conditions at the given time. More...
 
virtual SOLVER_UTILS_EXPORT bool v_NegatedOp ()
 Virtual function to identify if operator is negated in DoSolve. More...
 

Static Public Member Functions

static EquationSystemSharedPtr create (const LibUtilities::SessionReaderSharedPtr &pSession, const SpatialDomains::MeshGraphSharedPtr &pGraph)
 Creates an instance of this class. More...
 

Static Public Attributes

static std::string className
 Name of class. More...
 

Protected Member Functions

 PulseWavePropagation (const LibUtilities::SessionReaderSharedPtr &pSession, const SpatialDomains::MeshGraphSharedPtr &pGraph)
 
void DoOdeRhs (const Array< OneD, const Array< OneD, NekDouble >> &inarray, Array< OneD, Array< OneD, NekDouble >> &outarray, const NekDouble time)
 
void DoOdeProjection (const Array< OneD, const Array< OneD, NekDouble >> &inarray, Array< OneD, Array< OneD, NekDouble >> &outarray, const NekDouble time)
 
void SetPulseWaveBoundaryConditions (const Array< OneD, const Array< OneD, NekDouble >> &inarray, Array< OneD, Array< OneD, NekDouble >> &outarray, const NekDouble time)
 
virtual void v_InitObject ()
 
void GetFluxVector (const Array< OneD, Array< OneD, NekDouble >> &physfield, Array< OneD, Array< OneD, Array< OneD, NekDouble >>> &flux)
 DG Pulse Wave Propagation routines: More...
 
virtual void v_GenerateSummary (SolverUtils::SummaryList &s)
 
- Protected Member Functions inherited from Nektar::PulseWaveSystem
 PulseWaveSystem (const LibUtilities::SessionReaderSharedPtr &pSession, const SpatialDomains::MeshGraphSharedPtr &pGraph)
 Initialises PulseWaveSystem class members. More...
 
virtual void v_DoInitialise ()
 Sets up initial conditions. More...
 
virtual void v_DoSolve ()
 Solves an unsteady problem. More...
 
void LinkSubdomains (Array< OneD, Array< OneD, Array< OneD, NekDouble > > > &fields)
 Links the subdomains. More...
 
void BifurcationRiemann (Array< OneD, NekDouble > &Au, Array< OneD, NekDouble > &uu, Array< OneD, NekDouble > &beta, Array< OneD, NekDouble > &A_0, Array< OneD, NekDouble > &alpha)
 Riemann Problem for Bifurcation. More...
 
void MergingRiemann (Array< OneD, NekDouble > &Au, Array< OneD, NekDouble > &uu, Array< OneD, NekDouble > &beta, Array< OneD, NekDouble > &A_0, Array< OneD, NekDouble > &alpha)
 Riemann Problem for Merging Flow. More...
 
void JunctionRiemann (Array< OneD, NekDouble > &Au, Array< OneD, NekDouble > &uu, Array< OneD, NekDouble > &beta, Array< OneD, NekDouble > &A_0, Array< OneD, NekDouble > &alpha)
 Riemann Problem for Junction. More...
 
virtual void v_Output (void)
 
void CheckPoint_Output (const int n)
 
NekDouble v_L2Error (unsigned int field, const Array< OneD, NekDouble > &exactsoln=NullNekDouble1DArray, bool Normalised=false)
 Compute the L2 error between fields and a given exact solution. More...
 
NekDouble v_LinfError (unsigned int field, const Array< OneD, NekDouble > &exactsoln=NullNekDouble1DArray)
 Compute the L_inf error between fields and a given exact solution. More...
 
void WriteVessels (const std::string &outname)
 Write input fields to the given filename. More...
 
void EnforceInterfaceConditions (const Array< OneD, const Array< OneD, NekDouble > > &fields)
 
- Protected Member Functions inherited from Nektar::SolverUtils::UnsteadySystem
SOLVER_UTILS_EXPORT UnsteadySystem (const LibUtilities::SessionReaderSharedPtr &pSession, const SpatialDomains::MeshGraphSharedPtr &pGraph)
 Initialises UnsteadySystem class members. More...
 
SOLVER_UTILS_EXPORT NekDouble MaxTimeStepEstimator ()
 Get the maximum timestep estimator for cfl control. More...
 
virtual SOLVER_UTILS_EXPORT void v_AppendOutput1D (Array< OneD, Array< OneD, NekDouble >> &solution1D)
 Print the solution at each solution point in a txt file. More...
 
virtual SOLVER_UTILS_EXPORT NekDouble v_GetTimeStep (const Array< OneD, const Array< OneD, NekDouble >> &inarray)
 Return the timestep to be used for the next step in the time-marching loop. More...
 
virtual SOLVER_UTILS_EXPORT bool v_PreIntegrate (int step)
 
virtual SOLVER_UTILS_EXPORT bool v_PostIntegrate (int step)
 
virtual SOLVER_UTILS_EXPORT bool v_RequireFwdTrans ()
 
virtual SOLVER_UTILS_EXPORT void v_SteadyStateResidual (int step, Array< OneD, NekDouble > &L2)
 
SOLVER_UTILS_EXPORT void CheckForRestartTime (NekDouble &time, int &nchk)
 
SOLVER_UTILS_EXPORT void SVVVarDiffCoeff (const Array< OneD, Array< OneD, NekDouble >> vel, StdRegions::VarCoeffMap &varCoeffMap)
 Evaluate the SVV diffusion coefficient according to Moura's paper where it should proportional to h time velocity. More...
 
virtual SOLVER_UTILS_EXPORT bool UpdateTimeStepCheck ()
 
- Protected Member Functions inherited from Nektar::SolverUtils::EquationSystem
SOLVER_UTILS_EXPORT EquationSystem (const LibUtilities::SessionReaderSharedPtr &pSession, const SpatialDomains::MeshGraphSharedPtr &pGraph)
 Initialises EquationSystem class members. More...
 
virtual SOLVER_UTILS_EXPORT void v_TransCoeffToPhys ()
 Virtual function for transformation to physical space. More...
 
virtual SOLVER_UTILS_EXPORT void v_TransPhysToCoeff ()
 Virtual function for transformation to coefficient space. More...
 
virtual SOLVER_UTILS_EXPORT void v_SetInitialConditions (NekDouble initialtime=0.0, bool dumpInitialConditions=true, const int domain=0)
 
virtual SOLVER_UTILS_EXPORT void v_EvaluateExactSolution (unsigned int field, Array< OneD, NekDouble > &outfield, const NekDouble time)
 
virtual SOLVER_UTILS_EXPORT MultiRegions::ExpListSharedPtr v_GetPressure (void)
 
virtual SOLVER_UTILS_EXPORT void v_ExtraFldOutput (std::vector< Array< OneD, NekDouble > > &fieldcoeffs, std::vector< std::string > &variables)
 

Protected Attributes

SolverUtils::RiemannSolverSharedPtr m_riemannSolver
 
SolverUtils::AdvectionSharedPtr m_advObject
 
Array< OneD, PulseWaveBoundarySharedPtrm_Boundary
 
- Protected Attributes inherited from Nektar::PulseWaveSystem
Array< OneD, MultiRegions::ExpListSharedPtrm_vessels
 
int m_nDomains
 
int m_currentDomain
 
int m_nVariables
 
UpwindTypePulse m_upwindTypePulse
 
Array< OneD, int > m_fieldPhysOffset
 
NekDouble m_rho
 
NekDouble m_pext
 
NekDouble m_C
 
NekDouble m_RT
 
NekDouble m_pout
 
Array< OneD, Array< OneD, NekDouble > > m_A_0
 
Array< OneD, Array< OneD, NekDouble > > m_A_0_trace
 
Array< OneD, Array< OneD, NekDouble > > m_beta
 
Array< OneD, Array< OneD, NekDouble > > m_beta_trace
 
Array< OneD, Array< OneD, NekDouble > > m_gamma
 
Array< OneD, Array< OneD, NekDouble > > m_alpha
 
Array< OneD, Array< OneD, NekDouble > > m_alpha_trace
 
Array< OneD, Array< OneD, NekDouble > > m_trace_fwd_normal
 
Array< OneD, Array< OneD, NekDouble > > m_pressure
 
PulseWavePressureAreaSharedPtr m_pressureArea
 
bool extraFields = false
 
Array< OneD, Array< OneD, NekDouble > > m_PWV
 
Array< OneD, Array< OneD, NekDouble > > m_W1
 
Array< OneD, Array< OneD, NekDouble > > m_W2
 
std::vector< std::vector< InterfacePointShPtr > > m_vesselJcts
 
std::vector< std::vector< InterfacePointShPtr > > m_bifurcations
 
std::vector< std::vector< InterfacePointShPtr > > m_mergingJcts
 
- Protected Attributes inherited from Nektar::SolverUtils::UnsteadySystem
int m_infosteps
 Number of time steps between outputting status information. More...
 
int m_abortSteps
 Number of steps between checks for abort conditions. More...
 
int m_filtersInfosteps
 Number of time steps between outputting filters information. More...
 
int m_nanSteps
 
LibUtilities::TimeIntegrationSchemeSharedPtr m_intScheme
 Wrapper to the time integration scheme. More...
 
LibUtilities::TimeIntegrationSchemeOperators m_ode
 The time integration scheme operators to use. More...
 
NekDouble m_epsilon
 
bool m_explicitDiffusion
 Indicates if explicit or implicit treatment of diffusion is used. More...
 
bool m_explicitAdvection
 Indicates if explicit or implicit treatment of advection is used. More...
 
bool m_explicitReaction
 Indicates if explicit or implicit treatment of reaction is used. More...
 
bool m_homoInitialFwd
 Flag to determine if simulation should start in homogeneous forward transformed state. More...
 
NekDouble m_steadyStateTol
 Tolerance to which steady state should be evaluated at. More...
 
int m_steadyStateSteps
 Check for steady state at step interval. More...
 
NekDouble m_steadyStateRes = 1.0
 
NekDouble m_steadyStateRes0 = 1.0
 
Array< OneD, Array< OneD, NekDouble > > m_previousSolution
 Storage for previous solution for steady-state check. More...
 
std::ofstream m_errFile
 
std::vector< int > m_intVariables
 
std::vector< std::pair< std::string, FilterSharedPtr > > m_filters
 
NekDouble m_filterTimeWarning
 Number of time steps between outputting status information. More...
 
NekDouble m_TimeIntegLambda =0.0
 coefff of spacial derivatives(rhs or m_F in GLM) in calculating the residual of the whole equation(used in unsteady time integrations) More...
 
bool m_flagImplicitItsStatistics
 
bool m_flagImplicitSolver = false
 
Array< OneD, NekDoublem_magnitdEstimat
 estimate the magnitude of each conserved varibles More...
 
Array< OneD, NekDoublem_locTimeStep
 local time step(notice only for jfnk other see m_cflSafetyFactor) More...
 
NekDouble m_inArrayNorm =-1.0
 
int m_TotLinItePerStep =0
 
int m_StagesPerStep =1
 
bool m_flagUpdatePreconMat
 
int m_maxLinItePerNewton
 
int m_TotNewtonIts =0
 
int m_TotLinIts =0
 
int m_TotImpStages =0
 
bool m_CalcPhysicalAV = true
 flag to update artificial viscosity More...
 
- Protected Attributes inherited from Nektar::SolverUtils::EquationSystem
LibUtilities::CommSharedPtr m_comm
 Communicator. More...
 
bool m_verbose
 
bool m_root
 
LibUtilities::SessionReaderSharedPtr m_session
 The session reader. More...
 
std::map< std::string, SolverUtils::SessionFunctionSharedPtrm_sessionFunctions
 Map of known SessionFunctions. More...
 
LibUtilities::FieldIOSharedPtr m_fld
 Field input/output. More...
 
Array< OneD, MultiRegions::ExpListSharedPtrm_fields
 Array holding all dependent variables. More...
 
SpatialDomains::BoundaryConditionsSharedPtr m_boundaryConditions
 Pointer to boundary conditions object. More...
 
SpatialDomains::MeshGraphSharedPtr m_graph
 Pointer to graph defining mesh. More...
 
std::string m_sessionName
 Name of the session. More...
 
NekDouble m_time
 Current time of simulation. More...
 
int m_initialStep
 Number of the step where the simulation should begin. More...
 
NekDouble m_fintime
 Finish time of the simulation. More...
 
NekDouble m_timestep
 Time step size. More...
 
NekDouble m_timestepMax = -1.0
 Time step size. More...
 
NekDouble m_lambda
 Lambda constant in real system if one required. More...
 
NekDouble m_checktime
 Time between checkpoints. More...
 
NekDouble m_lastCheckTime
 
NekDouble m_TimeIncrementFactor
 
int m_nchk
 Number of checkpoints written so far. More...
 
int m_steps
 Number of steps to take. More...
 
int m_checksteps
 Number of steps between checkpoints. More...
 
int m_spacedim
 Spatial dimension (>= expansion dim). More...
 
int m_expdim
 Expansion dimension. More...
 
bool m_singleMode
 Flag to determine if single homogeneous mode is used. More...
 
bool m_halfMode
 Flag to determine if half homogeneous mode is used. More...
 
bool m_multipleModes
 Flag to determine if use multiple homogenenous modes are used. More...
 
bool m_useFFT
 Flag to determine if FFT is used for homogeneous transform. More...
 
bool m_homogen_dealiasing
 Flag to determine if dealiasing is used for homogeneous simulations. More...
 
bool m_specHP_dealiasing
 Flag to determine if dealisising is usde for the Spectral/hp element discretisation. More...
 
enum MultiRegions::ProjectionType m_projectionType
 Type of projection; e.g continuous or discontinuous. More...
 
Array< OneD, Array< OneD, NekDouble > > m_traceNormals
 Array holding trace normals for DG simulations in the forwards direction. More...
 
Array< OneD, bool > m_checkIfSystemSingular
 Flag to indicate if the fields should be checked for singularity. More...
 
LibUtilities::FieldMetaDataMap m_fieldMetaDataMap
 Map to identify relevant solver info to dump in output fields. More...
 
int m_NumQuadPointsError
 Number of Quadrature points used to work out the error. More...
 
enum HomogeneousType m_HomogeneousType
 
NekDouble m_LhomX
 physical length in X direction (if homogeneous) More...
 
NekDouble m_LhomY
 physical length in Y direction (if homogeneous) More...
 
NekDouble m_LhomZ
 physical length in Z direction (if homogeneous) More...
 
int m_npointsX
 number of points in X direction (if homogeneous) More...
 
int m_npointsY
 number of points in Y direction (if homogeneous) More...
 
int m_npointsZ
 number of points in Z direction (if homogeneous) More...
 
int m_HomoDirec
 number of homogenous directions More...
 

Friends

class MemoryManager< PulseWavePropagation >
 

Additional Inherited Members

- Public Attributes inherited from Nektar::SolverUtils::UnsteadySystem
NekDouble m_cflSafetyFactor
 CFL safety factor (comprise between 0 to 1). More...
 
NekDouble m_cflNonAcoustic
 
NekDouble m_CFLGrowth
 CFL growth rate. More...
 
NekDouble m_CFLEnd
 maximun cfl in cfl growth More...
 
- Protected Types inherited from Nektar::SolverUtils::EquationSystem
enum  HomogeneousType { eHomogeneous1D , eHomogeneous2D , eHomogeneous3D , eNotHomogeneous }
 Parameter for homogeneous expansions. More...
 
- Static Protected Attributes inherited from Nektar::SolverUtils::EquationSystem
static std::string equationSystemTypeLookupIds []
 

Detailed Description

Set up the routines based on the weak formulation from "Computational Modelling of 1D blood flow with variable mechanical properties" by S. J. Sherwin et al. The weak formulation (1) reads: \( \sum_{e=1}^{N_{el}} \left[ \left( \frac{\partial \mathbf{U}^{\delta} }{\partial t} , \mathbf{\psi}^{\delta} \right)_{\Omega_e} - \left( \frac{\partial \mathbf{F(\mathbf{U})}^{\delta} } {\partial x}, \mathbf{\psi}^{\delta} \right)_{\Omega_e} + \left[ \mathbf{\psi}^{\delta} \cdot \{ \mathbf{F}^u - \mathbf{F}(\mathbf{U}^{\delta}) \} \right]_{x_e^l}^{x_eû} \right] = 0 \)

Definition at line 50 of file PulseWavePropagation.h.

Constructor & Destructor Documentation

◆ ~PulseWavePropagation()

Nektar::PulseWavePropagation::~PulseWavePropagation ( )
virtual

Definition at line 132 of file PulseWavePropagation.cpp.

133 {
134 }

◆ PulseWavePropagation()

Nektar::PulseWavePropagation::PulseWavePropagation ( const LibUtilities::SessionReaderSharedPtr pSession,
const SpatialDomains::MeshGraphSharedPtr pGraph 
)
protected

Definition at line 60 of file PulseWavePropagation.cpp.

63  : PulseWaveSystem(pSession, pGraph)
64 {
65 }
PulseWaveSystem(const LibUtilities::SessionReaderSharedPtr &pSession, const SpatialDomains::MeshGraphSharedPtr &pGraph)
Initialises PulseWaveSystem class members.

Member Function Documentation

◆ create()

static EquationSystemSharedPtr Nektar::PulseWavePropagation::create ( const LibUtilities::SessionReaderSharedPtr pSession,
const SpatialDomains::MeshGraphSharedPtr pGraph 
)
inlinestatic

Creates an instance of this class.

Definition at line 57 of file PulseWavePropagation.h.

59  {
62  pGraph);
63  p->InitObject();
64  return p;
65  }
static std::shared_ptr< DataType > AllocateSharedPtr(const Args &...args)
Allocate a shared pointer from the memory pool.
std::shared_ptr< EquationSystem > EquationSystemSharedPtr
A shared pointer to an EquationSystem object.

References Nektar::MemoryManager< DataType >::AllocateSharedPtr(), and CellMLToNektar.cellml_metadata::p.

◆ DoOdeProjection()

void Nektar::PulseWavePropagation::DoOdeProjection ( const Array< OneD, const Array< OneD, NekDouble >> &  inarray,
Array< OneD, Array< OneD, NekDouble >> &  outarray,
const NekDouble  time 
)
protected

Definition at line 195 of file PulseWavePropagation.cpp.

199 {
200  // Just copy over array
201  for (int i = 0; i < m_nVariables; ++i)
202  {
203  Vmath::Vcopy(inarray[i].size(), inarray[i], 1, outarray[i], 1);
204  }
205 }
void Vcopy(int n, const T *x, const int incx, T *y, const int incy)
Definition: Vmath.cpp:1199

References Nektar::PulseWaveSystem::m_nVariables, and Vmath::Vcopy().

Referenced by v_InitObject().

◆ DoOdeRhs()

void Nektar::PulseWavePropagation::DoOdeRhs ( const Array< OneD, const Array< OneD, NekDouble >> &  inarray,
Array< OneD, Array< OneD, NekDouble >> &  outarray,
const NekDouble  time 
)
protected

Computes the right hand side of (1). The RHS is everything except the term that contains the time derivative \(\frac{\partial \mathbf{U}}{\partial t}\). In case of a Discontinuous Galerkin projection, m_advObject->Advect will be called

Definition at line 144 of file PulseWavePropagation.cpp.

148 {
149  int i;
150 
151  Array<OneD, Array<OneD, NekDouble> > physarray(m_nVariables);
152 
153  // Dummy array for WeakDG advection
154  Array<OneD, Array<OneD, NekDouble> > advVel(m_spacedim);
155 
156  // Output array for advection
157  Array<OneD, Array<OneD, NekDouble> > out(m_nVariables);
158 
159  int cnt = 0;
160 
161  // Set up Inflow and Outflow boundary conditions.
162  SetPulseWaveBoundaryConditions(inarray, outarray, time);
163 
164  // Set up any interface conditions and write into boundary condition
166 
167  // do advection evaluation in all domains
168  for (int omega = 0; omega < m_nDomains; ++omega)
169  {
170  m_currentDomain = omega;
171  int nq = m_vessels[omega * m_nVariables]->GetTotPoints();
172 
173  for (i = 0; i < m_nVariables; ++i)
174  {
175  physarray[i] = inarray[i] + cnt;
176  out[i] = outarray[i] + cnt;
177  }
178 
179  for (i = 0; i < m_nVariables; ++i)
180  {
181  m_fields[i] = m_vessels[omega * m_nVariables + i];
182  }
183 
184  m_advObject->Advect(m_nVariables, m_fields, advVel, physarray,
185  out, time);
186  for (i = 0; i < m_nVariables; ++i)
187  {
188  Vmath::Neg(nq, out[i], 1);
189  }
190 
191  cnt += nq;
192  }
193 }
SolverUtils::AdvectionSharedPtr m_advObject
void SetPulseWaveBoundaryConditions(const Array< OneD, const Array< OneD, NekDouble >> &inarray, Array< OneD, Array< OneD, NekDouble >> &outarray, const NekDouble time)
Array< OneD, MultiRegions::ExpListSharedPtr > m_vessels
void EnforceInterfaceConditions(const Array< OneD, const Array< OneD, NekDouble > > &fields)
int m_spacedim
Spatial dimension (>= expansion dim).
Array< OneD, MultiRegions::ExpListSharedPtr > m_fields
Array holding all dependent variables.
void Neg(int n, T *x, const int incx)
Negate x = -x.
Definition: Vmath.cpp:461

References Nektar::PulseWaveSystem::EnforceInterfaceConditions(), m_advObject, Nektar::PulseWaveSystem::m_currentDomain, Nektar::SolverUtils::EquationSystem::m_fields, Nektar::PulseWaveSystem::m_nDomains, Nektar::PulseWaveSystem::m_nVariables, Nektar::SolverUtils::EquationSystem::m_spacedim, Nektar::PulseWaveSystem::m_vessels, Vmath::Neg(), and SetPulseWaveBoundaryConditions().

Referenced by v_InitObject().

◆ GetA0()

Array< OneD, NekDouble > & Nektar::PulseWavePropagation::GetA0 ( )

Definition at line 362 of file PulseWavePropagation.cpp.

363 {
365 }
Array< OneD, Array< OneD, NekDouble > > m_A_0_trace

References Nektar::PulseWaveSystem::m_A_0_trace, and Nektar::PulseWaveSystem::m_currentDomain.

Referenced by v_InitObject().

◆ GetAlpha()

Array< OneD, NekDouble > & Nektar::PulseWavePropagation::GetAlpha ( )

Definition at line 372 of file PulseWavePropagation.cpp.

373 {
375 }
Array< OneD, Array< OneD, NekDouble > > m_alpha_trace

References Nektar::PulseWaveSystem::m_alpha_trace, and Nektar::PulseWaveSystem::m_currentDomain.

Referenced by v_InitObject().

◆ GetBeta()

Array< OneD, NekDouble > & Nektar::PulseWavePropagation::GetBeta ( )

Definition at line 367 of file PulseWavePropagation.cpp.

368 {
370 }
Array< OneD, Array< OneD, NekDouble > > m_beta_trace

References Nektar::PulseWaveSystem::m_beta_trace, and Nektar::PulseWaveSystem::m_currentDomain.

Referenced by v_InitObject().

◆ GetDomains()

NekDouble Nektar::PulseWavePropagation::GetDomains ( )

Definition at line 387 of file PulseWavePropagation.cpp.

388 {
389  return m_nDomains;
390 }

References Nektar::PulseWaveSystem::m_nDomains.

Referenced by v_InitObject().

◆ GetFluxVector()

void Nektar::PulseWavePropagation::GetFluxVector ( const Array< OneD, Array< OneD, NekDouble >> &  physfield,
Array< OneD, Array< OneD, Array< OneD, NekDouble >>> &  flux 
)
protected

DG Pulse Wave Propagation routines:

Calculates the second term of the weak form (1): \( \left( \frac{\partial \mathbf{F(\mathbf{U})}^{\delta} }{\partial x}, \mathbf{\psi}^{\delta} \right)_{\Omega_e} \) The variables of the system are $\mathbf{U} = [A,u]^T$ physfield[0] = A physfield[1] = u flux[0] = F[0] = A*u flux[1] = F[1] = u^2/2 + p/rho

Definition at line 293 of file PulseWavePropagation.cpp.

296 {
297  int nq = m_vessels[m_currentDomain * m_nVariables]->GetTotPoints();
298  NekDouble domain = m_currentDomain;
299  m_pressure[domain] = Array<OneD, NekDouble>(nq);
300  Array<OneD, NekDouble> dAUdx(nq);
301  NekDouble viscoelasticGradient = 0.0;
302 
303  for (int j = 0; j < nq; ++j)
304  {
305  flux[0][0][j] = physfield[0][j] * physfield[1][j];
306  }
307 
308  // d/dx of AU, for the viscoelastic tube law and extra fields
309  m_fields[0]->PhysDeriv(flux[0][0], dAUdx);
310 
311  for (int j = 0; j < nq; ++j)
312  {
313  if ((j == 0) || (j == nq - 1))
314  {
315  viscoelasticGradient = dAUdx[j];
316  }
317  else
318  {
319  viscoelasticGradient = (dAUdx[j] + dAUdx[j + 1]) / 2;
320  }
321 
322  m_pressureArea->GetPressure(m_pressure[domain][j],
323  m_beta[domain][j], physfield[0][j], m_A_0[domain][j],
324  viscoelasticGradient, m_gamma[domain][j], m_alpha[domain][j]);
325 
326  flux[1][0][j] = physfield[1][j] * physfield[1][j] / 2 +
327  m_pressure[domain][j] / m_rho;
328  }
329 
330  m_session->MatchSolverInfo("OutputExtraFields", "True", extraFields, true);
331 
332  if (extraFields)
333  {
334  /*
335  Calculates wave speed and characteristic variables.
336 
337  Ideally this should be moved to PulseWaveSystem, but it's easiest to
338  implement here.
339  */
340  int counter = 0;
341 
342  m_PWV[domain] = Array<OneD, NekDouble>(nq);
343  m_W1[domain] = Array<OneD, NekDouble>(nq);
344  m_W2[domain] = Array<OneD, NekDouble>(nq);
345 
346  for (int j = 0; j < nq; ++j)
347  {
348  m_pressureArea->GetC(m_PWV[domain][j], m_beta[domain][j],
349  physfield[0][counter + j], m_A_0[domain][j], m_alpha[domain][j]);
350  m_pressureArea->GetW1(m_W1[domain][j], physfield[1][counter + j],
351  m_beta[domain][j], physfield[0][counter + j], m_A_0[domain][j],
352  m_alpha[domain][j]);
353  m_pressureArea->GetW2(m_W2[domain][j], physfield[1][counter + j],
354  m_beta[domain][j], physfield[0][counter + j], m_A_0[domain][j],
355  m_alpha[domain][j]);
356  }
357 
358  counter += nq;
359  }
360 }
Array< OneD, Array< OneD, NekDouble > > m_A_0
Array< OneD, Array< OneD, NekDouble > > m_W2
PulseWavePressureAreaSharedPtr m_pressureArea
Array< OneD, Array< OneD, NekDouble > > m_W1
Array< OneD, Array< OneD, NekDouble > > m_pressure
Array< OneD, Array< OneD, NekDouble > > m_gamma
Array< OneD, Array< OneD, NekDouble > > m_alpha
Array< OneD, Array< OneD, NekDouble > > m_PWV
Array< OneD, Array< OneD, NekDouble > > m_beta
LibUtilities::SessionReaderSharedPtr m_session
The session reader.
double NekDouble

References Nektar::PulseWaveSystem::extraFields, Nektar::PulseWaveSystem::m_A_0, Nektar::PulseWaveSystem::m_alpha, Nektar::PulseWaveSystem::m_beta, Nektar::PulseWaveSystem::m_currentDomain, Nektar::SolverUtils::EquationSystem::m_fields, Nektar::PulseWaveSystem::m_gamma, Nektar::PulseWaveSystem::m_nVariables, Nektar::PulseWaveSystem::m_pressure, Nektar::PulseWaveSystem::m_pressureArea, Nektar::PulseWaveSystem::m_PWV, Nektar::PulseWaveSystem::m_rho, Nektar::SolverUtils::EquationSystem::m_session, Nektar::PulseWaveSystem::m_vessels, Nektar::PulseWaveSystem::m_W1, and Nektar::PulseWaveSystem::m_W2.

Referenced by v_InitObject().

◆ GetN()

Array< OneD, NekDouble > & Nektar::PulseWavePropagation::GetN ( )

Definition at line 377 of file PulseWavePropagation.cpp.

378 {
380 }
Array< OneD, Array< OneD, NekDouble > > m_trace_fwd_normal

References Nektar::PulseWaveSystem::m_currentDomain, and Nektar::PulseWaveSystem::m_trace_fwd_normal.

Referenced by v_InitObject().

◆ GetRho()

NekDouble Nektar::PulseWavePropagation::GetRho ( )

Definition at line 382 of file PulseWavePropagation.cpp.

383 {
384  return m_rho;
385 }

References Nektar::PulseWaveSystem::m_rho.

Referenced by v_InitObject().

◆ SetPulseWaveBoundaryConditions()

void Nektar::PulseWavePropagation::SetPulseWaveBoundaryConditions ( const Array< OneD, const Array< OneD, NekDouble >> &  inarray,
Array< OneD, Array< OneD, NekDouble >> &  outarray,
const NekDouble  time 
)
protected

Does the projection between ... space and the ... space. Also checks for Q-inflow boundary conditions at the inflow of the current arterial segment and applies the Q-inflow if specified

Definition at line 213 of file PulseWavePropagation.cpp.

218 {
219  int omega;
220 
221  Array<OneD, MultiRegions::ExpListSharedPtr> vessel(2);
222 
223  int offset = 0;
224 
225 // This will be moved to the RCR boundary condition once factory is setup
226  if (time == 0)
227  {
228  m_Boundary = Array<OneD,PulseWaveBoundarySharedPtr>(2 * m_nDomains);
229 
230  for (omega = 0; omega < m_nDomains; ++omega)
231  {
232  vessel[0] = m_vessels[2 * omega];
233  vessel[1] = m_vessels[2 * omega + 1];
234 
235  for (int j = 0; j < 2; ++j)
236  {
237  std::string BCType = vessel[0]->GetBndConditions()[j]->GetUserDefined();
238  if (BCType.empty()) // if not condition given define it to be NoUserDefined
239  {
240  BCType = "NoUserDefined";
241  }
242 
243  m_Boundary[2 * omega + j] =
246 
247  // turn on time dependent BCs
248  if (BCType == "Q-inflow")
249  {
250  vessel[0]->GetBndConditions()[j]->SetIsTimeDependent(true);
251  }
252  else if (BCType == "A-inflow")
253  {
254  vessel[0]->GetBndConditions()[j]->SetIsTimeDependent(true);
255  }
256  else if (BCType == "U-inflow")
257  {
258  vessel[1]->GetBndConditions()[j]->SetIsTimeDependent(true);
259  }
260  else if (BCType == "RCR-terminal")
261  {
262  vessel[0]->GetBndConditions()[j]->SetIsTimeDependent(true);
263  }
264  }
265  }
266 
267  }
268 
269  SetBoundaryConditions(time);
270 
271  // Loop over all vessels and set boundary conditions
272  for (omega = 0; omega < m_nDomains; ++omega)
273  {
274  for (int n = 0; n < 2; ++n)
275  {
276  m_Boundary[2 * omega + n]->DoBoundary(inarray, m_A_0, m_beta, m_alpha,
277  time, omega, offset, n);
278  }
279 
280  offset += m_vessels[2 * omega]->GetTotPoints();
281  }
282 }
tBaseSharedPtr CreateInstance(tKey idKey, tParam... args)
Create an instance of the class referred to by idKey.
Definition: NekFactory.hpp:145
Array< OneD, PulseWaveBoundarySharedPtr > m_Boundary
SOLVER_UTILS_EXPORT void SetBoundaryConditions(NekDouble time)
Evaluates the boundary conditions at the given time.
BoundaryFactory & GetBoundaryFactory()

References Nektar::LibUtilities::NekFactory< tKey, tBase, tParam >::CreateInstance(), Nektar::GetBoundaryFactory(), Nektar::PulseWaveSystem::m_A_0, Nektar::PulseWaveSystem::m_alpha, Nektar::PulseWaveSystem::m_beta, m_Boundary, Nektar::PulseWaveSystem::m_nDomains, Nektar::PulseWaveSystem::m_pressureArea, Nektar::SolverUtils::EquationSystem::m_session, Nektar::PulseWaveSystem::m_vessels, and Nektar::SolverUtils::EquationSystem::SetBoundaryConditions().

Referenced by DoOdeRhs().

◆ v_GenerateSummary()

void Nektar::PulseWavePropagation::v_GenerateSummary ( SolverUtils::SummaryList s)
protectedvirtual

Print summary routine, calls virtual routine reimplemented in UnsteadySystem

Reimplemented from Nektar::SolverUtils::UnsteadySystem.

Definition at line 396 of file PulseWavePropagation.cpp.

397 {
399 }
virtual SOLVER_UTILS_EXPORT void v_GenerateSummary(SummaryList &s)
Print a summary of time stepping parameters.

References Nektar::SolverUtils::UnsteadySystem::v_GenerateSummary().

◆ v_InitObject()

void Nektar::PulseWavePropagation::v_InitObject ( )
protectedvirtual

Initialisation routine for multidomain solver. Sets up the expansions for every arterial segment (m_vessels) and for one complete field m_outfield which is needed to write the postprocessing output. Also determines which upwind strategy is used (currently only upwinding scheme available) and reads blodd flow specific parameters from the inputfile

Reimplemented from Nektar::PulseWaveSystem.

Definition at line 67 of file PulseWavePropagation.cpp.

68 {
70 
71  if (m_session->DefinesSolverInfo("PressureArea"))
72  {
74  m_session->GetSolverInfo("PressureArea"), m_vessels, m_session);
75  }
76  else
77  {
80  }
81 
83  {
86  }
87  else
88  {
89  ASSERTL0(false, "Implicit Pulse Wave Propagation not set up.");
90  }
91 
92  // Create advection object
93  string advName;
94  string riemName;
95  switch(m_upwindTypePulse)
96  {
97  case eUpwindPulse:
98  {
99  advName = "WeakDG";
100  riemName = "UpwindPulse";
101  }
102  break;
103  default:
104  {
105  ASSERTL0(false, "populate switch statement for upwind flux");
106  }
107  break;
108  }
110  GetAdvectionFactory().CreateInstance(advName, advName);
111  m_advObject->SetFluxVector(
115  m_riemannSolver->SetScalar(
116  "A0", &PulseWavePropagation::GetA0, this);
117  m_riemannSolver->SetScalar(
118  "beta", &PulseWavePropagation::GetBeta, this);
119  m_riemannSolver->SetScalar(
120  "alpha", &PulseWavePropagation::GetAlpha, this);
121  m_riemannSolver->SetScalar(
122  "N", &PulseWavePropagation::GetN, this);
123  m_riemannSolver->SetParam(
124  "rho", &PulseWavePropagation::GetRho, this);
125  m_riemannSolver->SetParam(
126  "domains", &PulseWavePropagation::GetDomains, this);
127 
128  m_advObject->SetRiemannSolver(m_riemannSolver);
129  m_advObject->InitObject(m_session, m_fields);
130 }
#define ASSERTL0(condition, msg)
Definition: ErrorUtil.hpp:216
void DefineProjection(FuncPointerT func, ObjectPointerT obj)
void DefineOdeRhs(FuncPointerT func, ObjectPointerT obj)
Array< OneD, NekDouble > & GetAlpha()
SolverUtils::RiemannSolverSharedPtr m_riemannSolver
void GetFluxVector(const Array< OneD, Array< OneD, NekDouble >> &physfield, Array< OneD, Array< OneD, Array< OneD, NekDouble >>> &flux)
DG Pulse Wave Propagation routines:
Array< OneD, NekDouble > & GetN()
Array< OneD, NekDouble > & GetA0()
void DoOdeProjection(const Array< OneD, const Array< OneD, NekDouble >> &inarray, Array< OneD, Array< OneD, NekDouble >> &outarray, const NekDouble time)
Array< OneD, NekDouble > & GetBeta()
void DoOdeRhs(const Array< OneD, const Array< OneD, NekDouble >> &inarray, Array< OneD, Array< OneD, NekDouble >> &outarray, const NekDouble time)
UpwindTypePulse m_upwindTypePulse
LibUtilities::TimeIntegrationSchemeOperators m_ode
The time integration scheme operators to use.
bool m_explicitAdvection
Indicates if explicit or implicit treatment of advection is used.
AdvectionFactory & GetAdvectionFactory()
Gets the factory for initialising advection objects.
Definition: Advection.cpp:47
RiemannSolverFactory & GetRiemannSolverFactory()
PressureAreaFactory & GetPressureAreaFactory()
@ eUpwindPulse
simple upwinding scheme

References ASSERTL0, Nektar::LibUtilities::NekFactory< tKey, tBase, tParam >::CreateInstance(), Nektar::LibUtilities::TimeIntegrationSchemeOperators::DefineOdeRhs(), Nektar::LibUtilities::TimeIntegrationSchemeOperators::DefineProjection(), DoOdeProjection(), DoOdeRhs(), Nektar::eUpwindPulse, GetA0(), Nektar::SolverUtils::GetAdvectionFactory(), GetAlpha(), GetBeta(), GetDomains(), GetFluxVector(), GetN(), Nektar::GetPressureAreaFactory(), GetRho(), Nektar::SolverUtils::GetRiemannSolverFactory(), m_advObject, Nektar::SolverUtils::UnsteadySystem::m_explicitAdvection, Nektar::SolverUtils::EquationSystem::m_fields, Nektar::SolverUtils::UnsteadySystem::m_ode, Nektar::PulseWaveSystem::m_pressureArea, m_riemannSolver, Nektar::SolverUtils::EquationSystem::m_session, Nektar::PulseWaveSystem::m_upwindTypePulse, Nektar::PulseWaveSystem::m_vessels, and Nektar::PulseWaveSystem::v_InitObject().

Friends And Related Function Documentation

◆ MemoryManager< PulseWavePropagation >

friend class MemoryManager< PulseWavePropagation >
friend

Definition at line 1 of file PulseWavePropagation.h.

Member Data Documentation

◆ className

string Nektar::PulseWavePropagation::className
static
Initial value:
=
PulseWavePropagation::create, "Pulse Wave Propagation equation.")
tKey RegisterCreatorFunction(tKey idKey, CreatorFunction classCreator, std::string pDesc="")
Register a class with the factory.
Definition: NekFactory.hpp:200
static EquationSystemSharedPtr create(const LibUtilities::SessionReaderSharedPtr &pSession, const SpatialDomains::MeshGraphSharedPtr &pGraph)
Creates an instance of this class.
EquationSystemFactory & GetEquationSystemFactory()

Name of class.

Definition at line 68 of file PulseWavePropagation.h.

◆ m_advObject

SolverUtils::AdvectionSharedPtr Nektar::PulseWavePropagation::m_advObject
protected

Definition at line 102 of file PulseWavePropagation.h.

Referenced by DoOdeRhs(), and v_InitObject().

◆ m_Boundary

Array<OneD, PulseWaveBoundarySharedPtr> Nektar::PulseWavePropagation::m_Boundary
protected

Definition at line 104 of file PulseWavePropagation.h.

Referenced by SetPulseWaveBoundaryConditions().

◆ m_riemannSolver

SolverUtils::RiemannSolverSharedPtr Nektar::PulseWavePropagation::m_riemannSolver
protected

Definition at line 101 of file PulseWavePropagation.h.

Referenced by v_InitObject().