Virtual function for solve implementation.
86 time_t starttime, endtime;
89 m_equ[0]->PrintSummary(out);
93 m_equ[0]->DoInitialise();
100 bool isHomogeneous1D;
101 int nRuns, minP, maxP, sensorVar;
103 m_session->LoadParameter (
"NumRuns", nRuns, 1);
104 m_session->LoadParameter (
"AdaptiveMinModes", minP, 4);
105 m_session->LoadParameter (
"AdaptiveMaxModes", maxP, 12);
106 m_session->LoadParameter (
"AdaptiveLowerTolerance", lowerTol, 1e-8);
107 m_session->LoadParameter (
"AdaptiveUpperTolerance", upperTol, 1e-6);
108 m_session->LoadParameter (
"AdaptiveSensorVariable", sensorVar, 0);
109 m_session->MatchSolverInfo(
"Homogeneous",
"1D", isHomogeneous1D,
false);
115 nExp =
m_equ[0]->UpdateFields()[0]->GetPlane(0)->GetExpSize();
116 nPlanes =
m_equ[0]->UpdateFields()[0]->GetZIDs().size();
120 nExp =
m_equ[0]->UpdateFields()[0]->GetExpSize();
123 int expdim =
m_equ[0]->UpdateFields()[0]->GetGraph()->GetMeshDimension();
125 int nFields =
m_equ[0]->UpdateFields().size();
126 int numSteps =
m_session->GetParameter(
"NumSteps");
129 Array<OneD, NekDouble> coeffs, phys, physReduced, tmpArray;
134 m_equ[0]->UpdateFields());
137 Array<OneD, int>
P(expdim);
138 Array<OneD, int> numPoints(expdim);
139 Array<OneD, LibUtilities::PointsKey> ptsKey(expdim);
141 for (
int i = 1; i < nRuns; i++)
144 Array<OneD, MultiRegions::ExpListSharedPtr> fields =
145 m_equ[0]->UpdateFields();
148 map<int, int> deltaP;
150 for (
int n = 0; n < nExp; n++)
152 offset = fields[sensorVar]->GetPhys_Offset(n);
153 Exp = fields[sensorVar]->GetExp(n);
155 for(
int k = 0; k < expdim; ++k)
157 P[k] = Exp->GetBasis(k)->GetNumModes();
158 numPoints[k] = Exp->GetBasis(k)->GetNumPoints();
159 ptsKey[k] = LibUtilities::PointsKey (numPoints[k],
160 Exp->GetBasis(k)->GetPointsType());
165 switch (Exp->GetGeom()->GetShapeType())
173 OrthoExp = MemoryManager<
174 StdRegions::StdQuadExp>::AllocateSharedPtr(Ba, Bb);
241 ASSERTL0(
false,
"Shape not supported.");
245 int nq = OrthoExp->GetTotPoints();
251 coeffs = Array<OneD, NekDouble>(OrthoExp->GetNcoeffs());
252 physReduced = Array<OneD, NekDouble>(OrthoExp->GetTotPoints());
253 tmpArray = Array<OneD, NekDouble>(OrthoExp->GetTotPoints(), 0.0);
256 for (
int plane = 0; plane < nPlanes; plane++)
261 fields[sensorVar]->GetPlane(plane)->GetPhys() + offset;
265 phys = fields[sensorVar]->GetPhys() + offset;
269 OrthoExp->FwdTrans(phys, coeffs);
270 OrthoExp->BwdTrans(coeffs, physReduced);
273 Vmath::Vsub(nq, phys, 1, physReduced, 1, tmpArray, 1);
274 Vmath::Vmul(nq, tmpArray, 1, tmpArray, 1, tmpArray, 1);
275 tmp = Exp->Integral(tmpArray);
278 fac = Exp->Integral(tmpArray);
280 tmp =
abs(tmp / fac);
285 "Adaptive procedure encountered NaN value.");
289 error = (tmp > error) ? tmp : error;
293 m_session->GetComm()->GetColumnComm()->AllReduce(
297 if (
m_session->DefinesFunction(
"AdaptiveLowerTolerance"))
299 int nq = Exp->GetTotPoints();
302 Array<OneD, NekDouble> xc0, xc1, xc2;
303 xc0 = Array<OneD, NekDouble>(nq, 0.0);
304 xc1 = Array<OneD, NekDouble>(nq, 0.0);
305 xc2 = Array<OneD, NekDouble>(nq, 0.0);
306 Exp->GetCoords(xc0, xc1, xc2);
309 Array<OneD, NekDouble> tolerance(nq, 0.0);
311 m_session->GetFunction(
"AdaptiveLowerTolerance", 0);
312 ffunc->Evaluate(xc0, xc1, xc2, tolerance);
316 if (
m_session->DefinesFunction(
"AdaptiveUpperTolerance"))
318 int nq = Exp->GetTotPoints();
321 Array<OneD, NekDouble> xc0, xc1, xc2;
322 xc0 = Array<OneD, NekDouble>(nq, 0.0);
323 xc1 = Array<OneD, NekDouble>(nq, 0.0);
324 xc2 = Array<OneD, NekDouble>(nq, 0.0);
325 Exp->GetCoords(xc0, xc1, xc2);
328 Array<OneD, NekDouble> tolerance(nq, 0.0);
330 m_session->GetFunction(
"AdaptiveUpperTolerance", 0);
331 ffunc->Evaluate(xc0, xc1, xc2, tolerance);
336 if ((error > upperTol) && (
P[0] < maxP))
338 deltaP[Exp->GetGeom()->GetGlobalID()] = 1;
340 else if ((error < lowerTol) &&
P[0] > minP)
342 deltaP[Exp->GetGeom()->GetGlobalID()] = -1;
346 deltaP[Exp->GetGeom()->GetGlobalID()] = 0;
358 if (LibUtilities::NekManager<MultiRegions::GlobalLinSysKey,
359 MultiRegions::GlobalLinSys>::
360 PoolCreated(std::string(
"GlobalLinSys")))
362 LibUtilities::NekManager<MultiRegions::GlobalLinSysKey,
363 MultiRegions::GlobalLinSys>::
364 ClearManager(std::string(
"GlobalLinSys"));
367 int chkNumber =
m_equ[0]->GetCheckpointNumber();
368 int chkSteps =
m_equ[0]->GetCheckpointSteps();
374 mapping->ReplaceField(
m_equ[0]->UpdateFields());
377 m_equ[0]->SetCheckpointSteps(0);
380 m_equ[0]->DoInitialise();
381 m_equ[0]->SetInitialStep(i * numSteps);
382 m_equ[0]->SetSteps(i * numSteps + numSteps);
383 m_equ[0]->SetTime(startTime + i * period);
384 m_equ[0]->SetBoundaryConditions(startTime + i * period);
385 m_equ[0]->SetCheckpointNumber(chkNumber);
386 m_equ[0]->SetCheckpointSteps(chkSteps);
389 for (
int n = 0; n < nFields; n++)
391 m_equ[0]->UpdateFields()[n]->ExtractCoeffsToCoeffs(
392 fields[n], fields[n]->GetCoeffs(),
393 m_equ[0]->UpdateFields()[n]->UpdateCoeffs());
394 m_equ[0]->UpdateFields()[n]->BwdTrans_IterPerExp(
395 m_equ[0]->UpdateFields()[n]->GetCoeffs(),
396 m_equ[0]->UpdateFields()[n]->UpdatePhys());
407 if (
m_comm->GetRank() == 0)
409 CPUtime = difftime(endtime, starttime);
410 cout <<
"-------------------------------------------" << endl;
411 cout <<
"Total Computation Time = " << CPUtime <<
"s" << endl;
412 cout <<
"-------------------------------------------" << endl;
420 for (
int i = 0; i <
m_equ[0]->GetNvariables(); ++i)
422 Array<OneD, NekDouble> exactsoln(
m_equ[0]->GetTotPoints(), 0.0);
425 m_equ[0]->EvaluateExactSolution(i, exactsoln,
m_equ[0]->GetFinalTime());
430 if (
m_comm->GetRank() == 0)
432 out <<
"L 2 error (variable " <<
m_equ[0]->GetVariable(i)
433 <<
") : " << vL2Error << endl;
434 out <<
"L inf error (variable " <<
m_equ[0]->GetVariable(i)
435 <<
") : " << vLinfError << endl;
#define ASSERTL0(condition, msg)
static GLOBAL_MAPPING_EXPORT MappingSharedPtr Load(const LibUtilities::SessionReaderSharedPtr &pSession, const Array< OneD, MultiRegions::ExpListSharedPtr > &pFields)
Return a pointer to the mapping, creating it on first call.
SOLVER_UTILS_EXPORT void ReplaceExpansion(Array< OneD, MultiRegions::ExpListSharedPtr > &fields, std::map< int, int > deltaP)
Update EXPANSIONS tag inside XML schema to reflect new polynomial order distribution.
virtual SOLVER_UTILS_EXPORT void v_InitObject(std::ostream &out=std::cout)
LibUtilities::CommSharedPtr m_comm
Communication object.
SpatialDomains::MeshGraphSharedPtr m_graph
MeshGraph object.
GLOBAL_MAPPING_EXPORT typedef std::shared_ptr< Mapping > MappingSharedPtr
A shared pointer to a Mapping object.
std::shared_ptr< Equation > EquationSharedPtr
@ eOrtho_A
Principle Orthogonal Functions .
@ eOrtho_C
Principle Orthogonal Functions .
@ eOrtho_B
Principle Orthogonal Functions .
std::shared_ptr< Expansion > ExpansionSharedPtr
std::shared_ptr< StdExpansion > StdExpansionSharedPtr
void Vmul(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Multiply vector z = x*y.
T Vsum(int n, const T *x, const int incx)
Subtract return sum(x)
void Vsub(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Subtract vector z = x-y.
scalarT< T > abs(scalarT< T > in)