Nektar++
Public Member Functions | Protected Member Functions | Private Member Functions | List of all members
Nektar::StdRegions::StdExpansion2D Class Referenceabstract

#include <StdExpansion2D.h>

Inheritance diagram for Nektar::StdRegions::StdExpansion2D:
[legend]

Public Member Functions

 StdExpansion2D ()
 
 StdExpansion2D (int numcoeffs, const LibUtilities::BasisKey &Ba, const LibUtilities::BasisKey &Bb)
 
 StdExpansion2D (const StdExpansion2D &T)
 
virtual ~StdExpansion2D ()
 
void PhysTensorDeriv (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray_d0, Array< OneD, NekDouble > &outarray_d1)
 Calculate the 2D derivative in the local tensor/collapsed coordinate at the physical points. More...
 
NekDouble Integral (const Array< OneD, const NekDouble > &inarray, const Array< OneD, const NekDouble > &w0, const Array< OneD, const NekDouble > &w1)
 
void BwdTrans_SumFacKernel (const Array< OneD, const NekDouble > &base0, const Array< OneD, const NekDouble > &base1, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, Array< OneD, NekDouble > &wsp, bool doCheckCollDir0=true, bool doCheckCollDir1=true)
 
void IProductWRTBase_SumFacKernel (const Array< OneD, const NekDouble > &base0, const Array< OneD, const NekDouble > &base1, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, Array< OneD, NekDouble > &wsp, bool doCheckCollDir0=true, bool doCheckCollDir1=true)
 
- Public Member Functions inherited from Nektar::StdRegions::StdExpansion
 StdExpansion ()
 Default Constructor. More...
 
 StdExpansion (const int numcoeffs, const int numbases, const LibUtilities::BasisKey &Ba=LibUtilities::NullBasisKey, const LibUtilities::BasisKey &Bb=LibUtilities::NullBasisKey, const LibUtilities::BasisKey &Bc=LibUtilities::NullBasisKey)
 Constructor. More...
 
 StdExpansion (const StdExpansion &T)
 Copy Constructor. More...
 
virtual ~StdExpansion ()
 Destructor. More...
 
int GetNumBases () const
 This function returns the number of 1D bases used in the expansion. More...
 
const Array< OneD, const LibUtilities::BasisSharedPtr > & GetBase () const
 This function gets the shared point to basis. More...
 
const LibUtilities::BasisSharedPtrGetBasis (int dir) const
 This function gets the shared point to basis in the dir direction. More...
 
int GetNcoeffs (void) const
 This function returns the total number of coefficients used in the expansion. More...
 
int GetTotPoints () const
 This function returns the total number of quadrature points used in the element. More...
 
LibUtilities::BasisType GetBasisType (const int dir) const
 This function returns the type of basis used in the dir direction. More...
 
int GetBasisNumModes (const int dir) const
 This function returns the number of expansion modes in the dir direction. More...
 
int EvalBasisNumModesMax (void) const
 This function returns the maximum number of expansion modes over all local directions. More...
 
LibUtilities::PointsType GetPointsType (const int dir) const
 This function returns the type of quadrature points used in the dir direction. More...
 
int GetNumPoints (const int dir) const
 This function returns the number of quadrature points in the dir direction. More...
 
const Array< OneD, const NekDouble > & GetPoints (const int dir) const
 This function returns a pointer to the array containing the quadrature points in dir direction. More...
 
int GetNverts () const
 This function returns the number of vertices of the expansion domain. More...
 
int GetTraceNcoeffs (const int i) const
 This function returns the number of expansion coefficients belonging to the i-th trace. More...
 
int GetTraceIntNcoeffs (const int i) const
 
int GetTraceNumPoints (const int i) const
 This function returns the number of quadrature points belonging to the i-th trace. More...
 
const LibUtilities::BasisKey GetTraceBasisKey (const int i, int k=-1) const
 This function returns the basis key belonging to the i-th trace. More...
 
LibUtilities::PointsKey GetTracePointsKey (const int i, int k=-1) const
 This function returns the basis key belonging to the i-th trace. More...
 
int NumBndryCoeffs (void) const
 
int NumDGBndryCoeffs (void) const
 
const LibUtilities::PointsKey GetNodalPointsKey () const
 This function returns the type of expansion Nodal point type if defined. More...
 
int GetNtraces () const
 Returns the number of trace elements connected to this element. More...
 
LibUtilities::ShapeType DetShapeType () const
 This function returns the shape of the expansion domain. More...
 
std::shared_ptr< StdExpansionGetStdExp (void) const
 
std::shared_ptr< StdExpansionGetLinStdExp (void) const
 
int GetShapeDimension () const
 
bool IsBoundaryInteriorExpansion ()
 
bool IsNodalNonTensorialExp ()
 
void BwdTrans (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 This function performs the Backward transformation from coefficient space to physical space. More...
 
void FwdTrans (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 This function performs the Forward transformation from physical space to coefficient space. More...
 
void FwdTrans_BndConstrained (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
NekDouble Integral (const Array< OneD, const NekDouble > &inarray)
 This function integrates the specified function over the domain. More...
 
void FillMode (const int mode, Array< OneD, NekDouble > &outarray)
 This function fills the array outarray with the mode-th mode of the expansion. More...
 
void IProductWRTBase (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 this function calculates the inner product of a given function f with the different modes of the expansion More...
 
void IProductWRTBase (const Array< OneD, const NekDouble > &base, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, int coll_check)
 
void IProductWRTDerivBase (const int dir, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
void IProductWRTDirectionalDerivBase (const Array< OneD, const NekDouble > &direction, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
int GetElmtId ()
 Get the element id of this expansion when used in a list by returning value of m_elmt_id. More...
 
void SetElmtId (const int id)
 Set the element id of this expansion when used in a list by returning value of m_elmt_id. More...
 
void GetCoords (Array< OneD, NekDouble > &coords_1, Array< OneD, NekDouble > &coords_2=NullNekDouble1DArray, Array< OneD, NekDouble > &coords_3=NullNekDouble1DArray)
 this function returns the physical coordinates of the quadrature points of the expansion More...
 
void GetCoord (const Array< OneD, const NekDouble > &Lcoord, Array< OneD, NekDouble > &coord)
 given the coordinates of a point of the element in the local collapsed coordinate system, this function calculates the physical coordinates of the point More...
 
DNekMatSharedPtr GetStdMatrix (const StdMatrixKey &mkey)
 
DNekBlkMatSharedPtr GetStdStaticCondMatrix (const StdMatrixKey &mkey)
 
void NormVectorIProductWRTBase (const Array< OneD, const NekDouble > &Fx, Array< OneD, NekDouble > &outarray)
 
void NormVectorIProductWRTBase (const Array< OneD, const NekDouble > &Fx, const Array< OneD, NekDouble > &Fy, Array< OneD, NekDouble > &outarray)
 
void NormVectorIProductWRTBase (const Array< OneD, const NekDouble > &Fx, const Array< OneD, const NekDouble > &Fy, const Array< OneD, const NekDouble > &Fz, Array< OneD, NekDouble > &outarray)
 
void NormVectorIProductWRTBase (const Array< OneD, const Array< OneD, NekDouble > > &Fvec, Array< OneD, NekDouble > &outarray)
 
DNekScalBlkMatSharedPtr GetLocStaticCondMatrix (const LocalRegions::MatrixKey &mkey)
 
void DropLocStaticCondMatrix (const LocalRegions::MatrixKey &mkey)
 
int CalcNumberOfCoefficients (const std::vector< unsigned int > &nummodes, int &modes_offset)
 
NekDouble StdPhysEvaluate (const Array< OneD, const NekDouble > &Lcoord, const Array< OneD, const NekDouble > &physvals)
 
int GetCoordim ()
 
void GetBoundaryMap (Array< OneD, unsigned int > &outarray)
 
void GetInteriorMap (Array< OneD, unsigned int > &outarray)
 
int GetVertexMap (const int localVertexId, bool useCoeffPacking=false)
 
void GetTraceToElementMap (const int tid, Array< OneD, unsigned int > &maparray, Array< OneD, int > &signarray, Orientation traceOrient=eForwards, int P=-1, int Q=-1)
 
void GetTraceInteriorToElementMap (const int tid, Array< OneD, unsigned int > &maparray, Array< OneD, int > &signarray, const Orientation traceOrient=eForwards)
 
void GetTraceNumModes (const int tid, int &numModes0, int &numModes1, const Orientation traceOrient=eDir1FwdDir1_Dir2FwdDir2)
 
void MultiplyByQuadratureMetric (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
void MultiplyByStdQuadratureMetric (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
DNekMatSharedPtr CreateGeneralMatrix (const StdMatrixKey &mkey)
 this function generates the mass matrix \(\mathbf{M}[i][j] = \int \phi_i(\mathbf{x}) \phi_j(\mathbf{x}) d\mathbf{x}\) More...
 
void GeneralMatrixOp (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void MassMatrixOp (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void LaplacianMatrixOp (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void ReduceOrderCoeffs (int numMin, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
void SVVLaplacianFilter (Array< OneD, NekDouble > &array, const StdMatrixKey &mkey)
 
void ExponentialFilter (Array< OneD, NekDouble > &array, const NekDouble alpha, const NekDouble exponent, const NekDouble cutoff)
 
void LaplacianMatrixOp (const int k1, const int k2, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void WeakDerivMatrixOp (const int i, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void WeakDirectionalDerivMatrixOp (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void MassLevelCurvatureMatrixOp (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void LinearAdvectionDiffusionReactionMatrixOp (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey, bool addDiffusionTerm=true)
 
void HelmholtzMatrixOp (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
DNekMatSharedPtr GenMatrix (const StdMatrixKey &mkey)
 
void PhysDeriv (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &out_d0, Array< OneD, NekDouble > &out_d1=NullNekDouble1DArray, Array< OneD, NekDouble > &out_d2=NullNekDouble1DArray)
 
void PhysDeriv (const int dir, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
void PhysDeriv_s (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &out_ds)
 
void PhysDeriv_n (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &out_dn)
 
void PhysDirectionalDeriv (const Array< OneD, const NekDouble > &inarray, const Array< OneD, const NekDouble > &direction, Array< OneD, NekDouble > &outarray)
 
void StdPhysDeriv (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &out_d0, Array< OneD, NekDouble > &out_d1=NullNekDouble1DArray, Array< OneD, NekDouble > &out_d2=NullNekDouble1DArray)
 
void StdPhysDeriv (const int dir, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
NekDouble PhysEvaluate (const Array< OneD, const NekDouble > &coords, const Array< OneD, const NekDouble > &physvals)
 This function evaluates the expansion at a single (arbitrary) point of the domain. More...
 
NekDouble PhysEvaluate (const Array< OneD, DNekMatSharedPtr > &I, const Array< OneD, const NekDouble > &physvals)
 This function evaluates the expansion at a single (arbitrary) point of the domain. More...
 
NekDouble PhysEvaluateBasis (const Array< OneD, const NekDouble > &coords, int mode)
 This function evaluates the basis function mode mode at a point coords of the domain. More...
 
void LocCoordToLocCollapsed (const Array< OneD, const NekDouble > &xi, Array< OneD, NekDouble > &eta)
 Convert local cartesian coordinate xi into local collapsed coordinates eta. More...
 
void LocCollapsedToLocCoord (const Array< OneD, const NekDouble > &eta, Array< OneD, NekDouble > &xi)
 Convert local collapsed coordinates eta into local cartesian coordinate xi. More...
 
virtual int v_CalcNumberOfCoefficients (const std::vector< unsigned int > &nummodes, int &modes_offset)
 
virtual void v_NormVectorIProductWRTBase (const Array< OneD, const NekDouble > &Fx, Array< OneD, NekDouble > &outarray)
 
virtual void v_NormVectorIProductWRTBase (const Array< OneD, const NekDouble > &Fx, const Array< OneD, const NekDouble > &Fy, Array< OneD, NekDouble > &outarray)
 
virtual void v_NormVectorIProductWRTBase (const Array< OneD, const NekDouble > &Fx, const Array< OneD, const NekDouble > &Fy, const Array< OneD, const NekDouble > &Fz, Array< OneD, NekDouble > &outarray)
 
virtual void v_NormVectorIProductWRTBase (const Array< OneD, const Array< OneD, NekDouble > > &Fvec, Array< OneD, NekDouble > &outarray)
 
virtual DNekScalBlkMatSharedPtr v_GetLocStaticCondMatrix (const LocalRegions::MatrixKey &mkey)
 
virtual void v_DropLocStaticCondMatrix (const LocalRegions::MatrixKey &mkey)
 
NekDouble Linf (const Array< OneD, const NekDouble > &phys, const Array< OneD, const NekDouble > &sol=NullNekDouble1DArray)
 Function to evaluate the discrete \( L_\infty\) error \( |\epsilon|_\infty = \max |u - u_{exact}|\) where \( u_{exact}\) is given by the array sol. More...
 
NekDouble L2 (const Array< OneD, const NekDouble > &phys, const Array< OneD, const NekDouble > &sol=NullNekDouble1DArray)
 Function to evaluate the discrete \( L_2\) error, \( | \epsilon |_{2} = \left [ \int^1_{-1} [u - u_{exact}]^2 dx \right]^{1/2} d\xi_1 \) where \( u_{exact}\) is given by the array sol. More...
 
NekDouble H1 (const Array< OneD, const NekDouble > &phys, const Array< OneD, const NekDouble > &sol=NullNekDouble1DArray)
 Function to evaluate the discrete \( H^1\) error, \( | \epsilon |^1_{2} = \left [ \int^1_{-1} [u - u_{exact}]^2 + \nabla(u - u_{exact})\cdot\nabla(u - u_{exact})\cdot dx \right]^{1/2} d\xi_1 \) where \( u_{exact}\) is given by the array sol. More...
 
const LibUtilities::PointsKeyVector GetPointsKeys () const
 
DNekMatSharedPtr BuildInverseTransformationMatrix (const DNekScalMatSharedPtr &m_transformationmatrix)
 
void PhysInterpToSimplexEquiSpaced (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, int npset=-1)
 This function performs an interpolation from the physical space points provided at input into an array of equispaced points which are not the collapsed coordinate. So for a tetrahedron you will only get a tetrahedral number of values. More...
 
void GetSimplexEquiSpacedConnectivity (Array< OneD, int > &conn, bool standard=true)
 This function provides the connectivity of local simplices (triangles or tets) to connect the equispaced data points provided by PhysInterpToSimplexEquiSpaced. More...
 
void EquiSpacedToCoeffs (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 This function performs a projection/interpolation from the equispaced points sometimes used in post-processing onto the coefficient space. More...
 
template<class T >
std::shared_ptr< T > as ()
 
void IProductWRTBase_SumFac (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, bool multiplybyweights=true)
 
void GenStdMatBwdDeriv (const int dir, DNekMatSharedPtr &mat)
 

Protected Member Functions

virtual NekDouble v_PhysEvaluate (const Array< OneD, const NekDouble > &coords, const Array< OneD, const NekDouble > &physvals)
 This function evaluates the expansion at a single (arbitrary) point of the domain. More...
 
virtual NekDouble v_PhysEvaluate (const Array< OneD, DNekMatSharedPtr > &I, const Array< OneD, const NekDouble > &physvals)
 
virtual void v_BwdTrans_SumFacKernel (const Array< OneD, const NekDouble > &base0, const Array< OneD, const NekDouble > &base1, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, Array< OneD, NekDouble > &wsp, bool doCheckCollDir0, bool doCheckCollDir1)=0
 
virtual void v_IProductWRTBase_SumFacKernel (const Array< OneD, const NekDouble > &base0, const Array< OneD, const NekDouble > &base1, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, Array< OneD, NekDouble > &wsp, bool doCheckCollDir0, bool doCheckCollDir1)=0
 
virtual void v_LaplacianMatrixOp_MatFree (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdRegions::StdMatrixKey &mkey)
 
virtual void v_HelmholtzMatrixOp_MatFree (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdRegions::StdMatrixKey &mkey)
 
virtual void v_GenStdMatBwdDeriv (const int dir, DNekMatSharedPtr &mat)
 
- Protected Member Functions inherited from Nektar::StdRegions::StdExpansion
DNekMatSharedPtr CreateStdMatrix (const StdMatrixKey &mkey)
 
DNekBlkMatSharedPtr CreateStdStaticCondMatrix (const StdMatrixKey &mkey)
 Create the static condensation of a matrix when using a boundary interior decomposition. More...
 
void BwdTrans_MatOp (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
void BwdTrans_SumFac (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
void IProductWRTDerivBase_SumFac (const int dir, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
void IProductWRTDirectionalDerivBase_SumFac (const Array< OneD, const NekDouble > &direction, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
void GeneralMatrixOp_MatFree (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void MassMatrixOp_MatFree (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void LaplacianMatrixOp_MatFree (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void LaplacianMatrixOp_MatFree_Kernel (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, Array< OneD, NekDouble > &wsp)
 
void LaplacianMatrixOp_MatFree_GenericImpl (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void LaplacianMatrixOp_MatFree (const int k1, const int k2, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void WeakDerivMatrixOp_MatFree (const int i, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void WeakDirectionalDerivMatrixOp_MatFree (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void MassLevelCurvatureMatrixOp_MatFree (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void LinearAdvectionDiffusionReactionMatrixOp_MatFree (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey, bool addDiffusionTerm=true)
 
void HelmholtzMatrixOp_MatFree (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void HelmholtzMatrixOp_MatFree_GenericImpl (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
virtual void v_SetCoeffsToOrientation (StdRegions::Orientation dir, Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
virtual void v_SetCoeffsToOrientation (Array< OneD, NekDouble > &coeffs, StdRegions::Orientation dir)
 
virtual NekDouble v_StdPhysEvaluate (const Array< OneD, const NekDouble > &Lcoord, const Array< OneD, const NekDouble > &physvals)
 
virtual void v_MultiplyByStdQuadratureMetric (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
template<int DIR>
NekDouble BaryEvaluate (const NekDouble &coord, const NekDouble *physvals)
 This function performs the barycentric interpolation of the polynomial stored in coord at a point physvals using barycentric interpolation weights in direction. More...
 
template<int DIR>
NekDouble BaryEvaluateBasis (const NekDouble &coord, const int &mode)
 

Private Member Functions

virtual int v_GetShapeDimension () const
 
virtual int v_GetCoordim (void)
 

Additional Inherited Members

- Protected Attributes inherited from Nektar::StdRegions::StdExpansion
Array< OneD, LibUtilities::BasisSharedPtrm_base
 
int m_elmt_id
 
int m_ncoeffs
 
LibUtilities::NekManager< StdMatrixKey, DNekMat, StdMatrixKey::opLessm_stdMatrixManager
 
LibUtilities::NekManager< StdMatrixKey, DNekBlkMat, StdMatrixKey::opLessm_stdStaticCondMatrixManager
 

Detailed Description

Definition at line 48 of file StdExpansion2D.h.

Constructor & Destructor Documentation

◆ StdExpansion2D() [1/3]

Nektar::StdRegions::StdExpansion2D::StdExpansion2D ( )

Definition at line 48 of file StdExpansion2D.cpp.

49  {
50  }

◆ StdExpansion2D() [2/3]

Nektar::StdRegions::StdExpansion2D::StdExpansion2D ( int  numcoeffs,
const LibUtilities::BasisKey Ba,
const LibUtilities::BasisKey Bb 
)

Definition at line 52 of file StdExpansion2D.cpp.

54  :
55  StdExpansion(numcoeffs,2, Ba, Bb)
56  {
57  }
StdExpansion()
Default Constructor.

◆ StdExpansion2D() [3/3]

Nektar::StdRegions::StdExpansion2D::StdExpansion2D ( const StdExpansion2D T)

Definition at line 59 of file StdExpansion2D.cpp.

59  :
60  StdExpansion(T)
61  {
62  }

◆ ~StdExpansion2D()

Nektar::StdRegions::StdExpansion2D::~StdExpansion2D ( )
virtual

Definition at line 64 of file StdExpansion2D.cpp.

65  {
66  }

Member Function Documentation

◆ BwdTrans_SumFacKernel()

void Nektar::StdRegions::StdExpansion2D::BwdTrans_SumFacKernel ( const Array< OneD, const NekDouble > &  base0,
const Array< OneD, const NekDouble > &  base1,
const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray,
Array< OneD, NekDouble > &  wsp,
bool  doCheckCollDir0 = true,
bool  doCheckCollDir1 = true 
)

Definition at line 198 of file StdExpansion2D.cpp.

206  {
207  v_BwdTrans_SumFacKernel(base0, base1, inarray, outarray, wsp, doCheckCollDir0, doCheckCollDir1);
208  }
virtual void v_BwdTrans_SumFacKernel(const Array< OneD, const NekDouble > &base0, const Array< OneD, const NekDouble > &base1, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, Array< OneD, NekDouble > &wsp, bool doCheckCollDir0, bool doCheckCollDir1)=0

References v_BwdTrans_SumFacKernel().

Referenced by Nektar::StdRegions::StdQuadExp::v_BwdTrans_SumFac(), Nektar::StdRegions::StdTriExp::v_BwdTrans_SumFac(), v_HelmholtzMatrixOp_MatFree(), and v_LaplacianMatrixOp_MatFree().

◆ Integral()

NekDouble Nektar::StdRegions::StdExpansion2D::Integral ( const Array< OneD, const NekDouble > &  inarray,
const Array< OneD, const NekDouble > &  w0,
const Array< OneD, const NekDouble > &  w1 
)

Definition at line 171 of file StdExpansion2D.cpp.

174  {
175  int i;
176  NekDouble Int = 0.0;
177  int nquad0 = m_base[0]->GetNumPoints();
178  int nquad1 = m_base[1]->GetNumPoints();
179  Array<OneD, NekDouble> tmp(nquad0 * nquad1);
180 
181  // multiply by integration constants
182  for (i = 0; i < nquad1; ++i)
183  {
184  Vmath::Vmul(nquad0, &inarray[0] + i*nquad0, 1, w0.get(),
185  1, &tmp[0] + i*nquad0, 1);
186  }
187 
188  for (i = 0; i < nquad0; ++i)
189  {
190  Vmath::Vmul(nquad1, &tmp[0]+ i, nquad0, w1.get(), 1,
191  &tmp[0] + i, nquad0);
192  }
193  Int = Vmath::Vsum(nquad0 * nquad1, tmp, 1);
194 
195  return Int;
196  }
Array< OneD, LibUtilities::BasisSharedPtr > m_base
double NekDouble
void Vmul(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Multiply vector z = x*y.
Definition: Vmath.cpp:192
T Vsum(int n, const T *x, const int incx)
Subtract return sum(x)
Definition: Vmath.cpp:846

References Nektar::StdRegions::StdExpansion::m_base, Vmath::Vmul(), and Vmath::Vsum().

Referenced by Nektar::StdRegions::StdQuadExp::v_Integral(), and Nektar::StdRegions::StdTriExp::v_Integral().

◆ IProductWRTBase_SumFacKernel()

void Nektar::StdRegions::StdExpansion2D::IProductWRTBase_SumFacKernel ( const Array< OneD, const NekDouble > &  base0,
const Array< OneD, const NekDouble > &  base1,
const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray,
Array< OneD, NekDouble > &  wsp,
bool  doCheckCollDir0 = true,
bool  doCheckCollDir1 = true 
)

◆ PhysTensorDeriv()

void Nektar::StdRegions::StdExpansion2D::PhysTensorDeriv ( const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray_d0,
Array< OneD, NekDouble > &  outarray_d1 
)

Calculate the 2D derivative in the local tensor/collapsed coordinate at the physical points.

This function is independent of the expansion basis and can therefore be defined for all tensor product distribution of quadrature points in a generic manner. The key operations are:

  • \( \frac{d}{d\eta_1} \rightarrow {\bf D^T_0 u } \)
  • \( \frac{d}{d\eta_2} \rightarrow {\bf D_1 u } \)
Parameters
inarrayarray of physical points to be differentiated
outarray_d0the resulting array of derivative in the \(\eta_1\) direction will be stored in outarray_d0 as output of the function
outarray_d1the resulting array of derivative in the \(\eta_2\) direction will be stored in outarray_d1 as output of the function

Recall that: \( \hspace{1cm} \begin{array}{llll} \mbox{Shape} & \mbox{Cartesian coordinate range} & \mbox{Collapsed coord.} & \mbox{Collapsed coordinate definition}\\ \mbox{Quadrilateral} & -1 \leq \xi_1,\xi_2 \leq 1 & -1 \leq \eta_1,\eta_2 \leq 1 & \eta_1 = \xi_1, \eta_2 = \xi_2\\ \mbox{Triangle} & -1 \leq \xi_1,\xi_2; \xi_1+\xi_2 \leq 0 & -1 \leq \eta_1,\eta_2 \leq 1 & \eta_1 = \frac{2(1+\xi_1)}{(1-\xi_2)}-1, \eta_2 = \xi_2 \\ \end{array} \)

Definition at line 71 of file StdExpansion2D.cpp.

74  {
75  int nquad0 = m_base[0]->GetNumPoints();
76  int nquad1 = m_base[1]->GetNumPoints();
77 
78  if (outarray_d0.size() > 0) // calculate du/dx_0
79  {
80  DNekMatSharedPtr D0 = m_base[0]->GetD();
81  if(inarray.data() == outarray_d0.data())
82  {
83  Array<OneD, NekDouble> wsp(nquad0 * nquad1);
84  Vmath::Vcopy(nquad0 * nquad1,inarray.get(),1,wsp.get(),1);
85  Blas::Dgemm('N', 'N', nquad0, nquad1, nquad0, 1.0,
86  &(D0->GetPtr())[0], nquad0, &wsp[0], nquad0, 0.0,
87  &outarray_d0[0], nquad0);
88  }
89  else
90  {
91  Blas::Dgemm('N', 'N', nquad0, nquad1, nquad0, 1.0,
92  &(D0->GetPtr())[0], nquad0, &inarray[0], nquad0, 0.0,
93  &outarray_d0[0], nquad0);
94  }
95  }
96 
97  if (outarray_d1.size() > 0) // calculate du/dx_1
98  {
99  DNekMatSharedPtr D1 = m_base[1]->GetD();
100  if(inarray.data() == outarray_d1.data())
101  {
102  Array<OneD, NekDouble> wsp(nquad0 * nquad1);
103  Vmath::Vcopy(nquad0 * nquad1,inarray.get(),1,wsp.get(),1);
104  Blas:: Dgemm('N', 'T', nquad0, nquad1, nquad1, 1.0, &wsp[0], nquad0,
105  &(D1->GetPtr())[0], nquad1, 0.0, &outarray_d1[0], nquad0);
106  }
107  else
108  {
109  Blas:: Dgemm('N', 'T', nquad0, nquad1, nquad1, 1.0, &inarray[0], nquad0,
110  &(D1->GetPtr())[0], nquad1, 0.0, &outarray_d1[0], nquad0);
111  }
112  }
113  }
static void Dgemm(const char &transa, const char &transb, const int &m, const int &n, const int &k, const double &alpha, const double *a, const int &lda, const double *b, const int &ldb, const double &beta, double *c, const int &ldc)
BLAS level 3: Matrix-matrix multiply C = A x B where op(A)[m x k], op(B)[k x n], C[m x n] DGEMM perfo...
Definition: Blas.hpp:394
std::shared_ptr< DNekMat > DNekMatSharedPtr
Definition: NekTypeDefs.hpp:69
void Vcopy(int n, const T *x, const int incx, T *y, const int incy)
Definition: Vmath.cpp:1199

References Blas::Dgemm(), Nektar::StdRegions::StdExpansion::m_base, and Vmath::Vcopy().

Referenced by Nektar::StdRegions::StdQuadExp::v_PhysDeriv(), and Nektar::StdRegions::StdTriExp::v_PhysDeriv().

◆ v_BwdTrans_SumFacKernel()

virtual void Nektar::StdRegions::StdExpansion2D::v_BwdTrans_SumFacKernel ( const Array< OneD, const NekDouble > &  base0,
const Array< OneD, const NekDouble > &  base1,
const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray,
Array< OneD, NekDouble > &  wsp,
bool  doCheckCollDir0,
bool  doCheckCollDir1 
)
protectedpure virtual

◆ v_GenStdMatBwdDeriv()

void Nektar::StdRegions::StdExpansion2D::v_GenStdMatBwdDeriv ( const int  dir,
DNekMatSharedPtr mat 
)
protectedvirtual

Reimplemented from Nektar::StdRegions::StdExpansion.

Definition at line 222 of file StdExpansion2D.cpp.

225  {
226  ASSERTL1((dir==0) || (dir==1),
227  "Invalid direction.");
228 
229  int nquad0 = m_base[0]->GetNumPoints();
230  int nquad1 = m_base[1]->GetNumPoints();
231  int nqtot = nquad0*nquad1;
232  int nmodes0 = m_base[0]->GetNumModes();
233 
234  Array<OneD, NekDouble> tmp1(2*nqtot+m_ncoeffs+nmodes0*nquad1,0.0);
235  Array<OneD, NekDouble> tmp3(tmp1 + 2*nqtot);
236  Array<OneD, NekDouble> tmp4(tmp1 + 2*nqtot+m_ncoeffs);
237 
238  switch(dir)
239  {
240  case 0:
241  for(int i=0; i<nqtot;i++)
242  {
243  tmp1[i] = 1.0;
245  m_base[0]->GetDbdata(), m_base[1]->GetBdata(),
246  tmp1, tmp3, tmp4, false, true);
247  tmp1[i] = 0.0;
248 
249  for(int j=0; j<m_ncoeffs;j++)
250  {
251  (*mat)(j,i) = tmp3[j];
252  }
253  }
254  break;
255  case 1:
256  for(int i=0; i<nqtot;i++)
257  {
258  tmp1[i] = 1.0;
260  m_base[0]->GetBdata() , m_base[1]->GetDbdata(),
261  tmp1, tmp3, tmp4, true, false);
262  tmp1[i] = 0.0;
263 
264  for(int j=0; j<m_ncoeffs;j++)
265  {
266  (*mat)(j,i) = tmp3[j];
267  }
268  }
269  break;
270  default:
271  NEKERROR(ErrorUtil::efatal, "Not a 2D expansion.");
272  break;
273  }
274  }
#define NEKERROR(type, msg)
Assert Level 0 – Fundamental assert which is used whether in FULLDEBUG, DEBUG or OPT compilation mode...
Definition: ErrorUtil.hpp:209
#define ASSERTL1(condition, msg)
Assert Level 1 – Debugging which is used whether in FULLDEBUG or DEBUG compilation mode....
Definition: ErrorUtil.hpp:250
void IProductWRTBase_SumFacKernel(const Array< OneD, const NekDouble > &base0, const Array< OneD, const NekDouble > &base1, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, Array< OneD, NekDouble > &wsp, bool doCheckCollDir0=true, bool doCheckCollDir1=true)

References ASSERTL1, Nektar::ErrorUtil::efatal, IProductWRTBase_SumFacKernel(), Nektar::StdRegions::StdExpansion::m_base, Nektar::StdRegions::StdExpansion::m_ncoeffs, and NEKERROR.

◆ v_GetCoordim()

virtual int Nektar::StdRegions::StdExpansion2D::v_GetCoordim ( void  )
inlineprivatevirtual

Reimplemented from Nektar::StdRegions::StdExpansion.

Reimplemented in Nektar::LocalRegions::TriExp, and Nektar::LocalRegions::QuadExp.

Definition at line 189 of file StdExpansion2D.h.

190  {
191  return 2;
192  }

◆ v_GetShapeDimension()

virtual int Nektar::StdRegions::StdExpansion2D::v_GetShapeDimension ( ) const
inlineprivatevirtual

Reimplemented from Nektar::StdRegions::StdExpansion.

Definition at line 184 of file StdExpansion2D.h.

185  {
186  return 2;
187  }

◆ v_HelmholtzMatrixOp_MatFree()

void Nektar::StdRegions::StdExpansion2D::v_HelmholtzMatrixOp_MatFree ( const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray,
const StdRegions::StdMatrixKey mkey 
)
protectedvirtual

Reimplemented from Nektar::StdRegions::StdExpansion.

Definition at line 325 of file StdExpansion2D.cpp.

329  {
330  if (mkey.GetNVarCoeff() == 0 && !mkey.ConstFactorExists(StdRegions::eFactorCoeffD00)
331  &&!mkey.ConstFactorExists(StdRegions::eFactorSVVCutoffRatio))
332  {
333  using std::max;
334 
335  int nquad0 = m_base[0]->GetNumPoints();
336  int nquad1 = m_base[1]->GetNumPoints();
337  int nqtot = nquad0*nquad1;
338  int nmodes0 = m_base[0]->GetNumModes();
339  int nmodes1 = m_base[1]->GetNumModes();
340  int wspsize = max(max(max(nqtot,m_ncoeffs),nquad1*nmodes0),
341  nquad0*nmodes1);
342  NekDouble lambda =
343  mkey.GetConstFactor(StdRegions::eFactorLambda);
344 
345  const Array<OneD, const NekDouble>& base0 = m_base[0]->GetBdata();
346  const Array<OneD, const NekDouble>& base1 = m_base[1]->GetBdata();
347 
348  // Allocate temporary storage
349  Array<OneD,NekDouble> wsp0(5*wspsize); // size wspsize
350  Array<OneD,NekDouble> wsp1(wsp0 + wspsize); // size wspsize
351  Array<OneD,NekDouble> wsp2(wsp0 + 2*wspsize);// size 3*wspsize
352 
353  if (!(m_base[0]->Collocation() && m_base[1]->Collocation()))
354  {
355  // MASS MATRIX OPERATION
356  // The following is being calculated:
357  // wsp0 = B * u_hat = u
358  // wsp1 = W * wsp0
359  // outarray = B^T * wsp1 = B^T * W * B * u_hat = M * u_hat
360  BwdTrans_SumFacKernel (base0, base1, inarray,
361  wsp0, wsp2,true,true);
362  MultiplyByQuadratureMetric (wsp0, wsp1);
363  IProductWRTBase_SumFacKernel(base0, base1, wsp1, outarray,
364  wsp2, true, true);
365 
366  LaplacianMatrixOp_MatFree_Kernel(wsp0, wsp1, wsp2);
367  }
368  else
369  {
370  MultiplyByQuadratureMetric(inarray,outarray);
371  LaplacianMatrixOp_MatFree_Kernel(inarray, wsp1, wsp2);
372  }
373 
374  // outarray = lambda * outarray + wsp1
375  // = (lambda * M + L ) * u_hat
376  Vmath::Svtvp(m_ncoeffs, lambda, &outarray[0], 1,
377  &wsp1[0], 1, &outarray[0], 1);
378  }
379  else
380  {
382  inarray,outarray,mkey);
383  }
384  }
void BwdTrans_SumFacKernel(const Array< OneD, const NekDouble > &base0, const Array< OneD, const NekDouble > &base1, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, Array< OneD, NekDouble > &wsp, bool doCheckCollDir0=true, bool doCheckCollDir1=true)
void MultiplyByQuadratureMetric(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
Definition: StdExpansion.h:733
void HelmholtzMatrixOp_MatFree_GenericImpl(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
void LaplacianMatrixOp_MatFree_Kernel(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, Array< OneD, NekDouble > &wsp)
void Svtvp(int n, const T alpha, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
svtvp (scalar times vector plus vector): z = alpha*x + y
Definition: Vmath.cpp:565

References BwdTrans_SumFacKernel(), Nektar::StdRegions::StdMatrixKey::ConstFactorExists(), Nektar::StdRegions::eFactorCoeffD00, Nektar::StdRegions::eFactorLambda, Nektar::StdRegions::eFactorSVVCutoffRatio, Nektar::StdRegions::StdMatrixKey::GetConstFactor(), Nektar::StdRegions::StdMatrixKey::GetNVarCoeff(), Nektar::StdRegions::StdExpansion::HelmholtzMatrixOp_MatFree_GenericImpl(), IProductWRTBase_SumFacKernel(), Nektar::StdRegions::StdExpansion::LaplacianMatrixOp_MatFree_Kernel(), Nektar::StdRegions::StdExpansion::m_base, Nektar::StdRegions::StdExpansion::m_ncoeffs, Nektar::StdRegions::StdExpansion::MultiplyByQuadratureMetric(), and Vmath::Svtvp().

Referenced by Nektar::StdRegions::StdQuadExp::v_HelmholtzMatrixOp(), and Nektar::StdRegions::StdTriExp::v_HelmholtzMatrixOp().

◆ v_IProductWRTBase_SumFacKernel()

virtual void Nektar::StdRegions::StdExpansion2D::v_IProductWRTBase_SumFacKernel ( const Array< OneD, const NekDouble > &  base0,
const Array< OneD, const NekDouble > &  base1,
const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray,
Array< OneD, NekDouble > &  wsp,
bool  doCheckCollDir0,
bool  doCheckCollDir1 
)
protectedpure virtual

◆ v_LaplacianMatrixOp_MatFree()

void Nektar::StdRegions::StdExpansion2D::v_LaplacianMatrixOp_MatFree ( const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray,
const StdRegions::StdMatrixKey mkey 
)
protectedvirtual

Reimplemented from Nektar::StdRegions::StdExpansion.

Definition at line 276 of file StdExpansion2D.cpp.

280  {
281  if (mkey.GetNVarCoeff() == 0 && !mkey.ConstFactorExists(StdRegions::eFactorCoeffD00)
282  &&!mkey.ConstFactorExists(StdRegions::eFactorSVVCutoffRatio))
283  {
284  using std::max;
285 
286  // This implementation is only valid when there are no
287  // coefficients associated to the Laplacian operator
288  int nquad0 = m_base[0]->GetNumPoints();
289  int nquad1 = m_base[1]->GetNumPoints();
290  int nqtot = nquad0*nquad1;
291  int nmodes0 = m_base[0]->GetNumModes();
292  int nmodes1 = m_base[1]->GetNumModes();
293  int wspsize = max(max(max(nqtot,m_ncoeffs),nquad1*nmodes0),nquad0*nmodes1);
294 
295  const Array<OneD, const NekDouble>& base0 = m_base[0]->GetBdata();
296  const Array<OneD, const NekDouble>& base1 = m_base[1]->GetBdata();
297 
298  // Allocate temporary storage
299  Array<OneD,NekDouble> wsp0(4*wspsize); // size wspsize
300  Array<OneD,NekDouble> wsp1(wsp0+wspsize); // size 3*wspsize
301 
302  if(!(m_base[0]->Collocation() && m_base[1]->Collocation()))
303  {
304  // LAPLACIAN MATRIX OPERATION
305  // wsp0 = u = B * u_hat
306  // wsp1 = du_dxi1 = D_xi1 * wsp0 = D_xi1 * u
307  // wsp2 = du_dxi2 = D_xi2 * wsp0 = D_xi2 * u
308  BwdTrans_SumFacKernel(base0,base1,inarray,wsp0,wsp1,true,true);
309  LaplacianMatrixOp_MatFree_Kernel(wsp0, outarray, wsp1);
310  }
311  else
312  {
313  LaplacianMatrixOp_MatFree_Kernel(inarray, outarray, wsp1);
314  }
315  }
316  else
317  {
319  inarray,outarray,mkey);
320  }
321  }
void LaplacianMatrixOp_MatFree_GenericImpl(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)

References BwdTrans_SumFacKernel(), Nektar::StdRegions::StdMatrixKey::ConstFactorExists(), Nektar::StdRegions::eFactorCoeffD00, Nektar::StdRegions::eFactorSVVCutoffRatio, Nektar::StdRegions::StdMatrixKey::GetNVarCoeff(), Nektar::StdRegions::StdExpansion::LaplacianMatrixOp_MatFree_GenericImpl(), Nektar::StdRegions::StdExpansion::LaplacianMatrixOp_MatFree_Kernel(), Nektar::StdRegions::StdExpansion::m_base, and Nektar::StdRegions::StdExpansion::m_ncoeffs.

Referenced by Nektar::StdRegions::StdQuadExp::v_LaplacianMatrixOp(), and Nektar::StdRegions::StdTriExp::v_LaplacianMatrixOp().

◆ v_PhysEvaluate() [1/2]

NekDouble Nektar::StdRegions::StdExpansion2D::v_PhysEvaluate ( const Array< OneD, const NekDouble > &  coords,
const Array< OneD, const NekDouble > &  physvals 
)
protectedvirtual

This function evaluates the expansion at a single (arbitrary) point of the domain.

This function is a wrapper around the virtual function v_PhysEvaluate()

Based on the value of the expansion at the quadrature points, this function calculates the value of the expansion at an arbitrary single points (with coordinates \( \mathbf{x_c}\) given by the pointer coords). This operation, equivalent to

\[ u(\mathbf{x_c}) = \sum_p \phi_p(\mathbf{x_c}) \hat{u}_p \]

is evaluated using Lagrangian interpolants through the quadrature points:

\[ u(\mathbf{x_c}) = \sum_p h_p(\mathbf{x_c}) u_p\]

This function requires that the physical value array \(\mathbf{u}\) (implemented as the attribute #m_phys) is set.

Parameters
coordsthe coordinates of the single point
Returns
returns the value of the expansion at the single point

Reimplemented from Nektar::StdRegions::StdExpansion.

Reimplemented in Nektar::LocalRegions::TriExp, Nektar::LocalRegions::QuadExp, and Nektar::LocalRegions::NodalTriExp.

Definition at line 115 of file StdExpansion2D.cpp.

118  {
119  ASSERTL2(coords[0] > -1 - NekConstants::kNekZeroTol,
120  "coord[0] < -1");
121  ASSERTL2(coords[0] < 1 + NekConstants::kNekZeroTol,
122  "coord[0] > 1");
123  ASSERTL2(coords[1] > -1 - NekConstants::kNekZeroTol,
124  "coord[1] < -1");
125  ASSERTL2(coords[1] < 1 + NekConstants::kNekZeroTol,
126  "coord[1] > 1");
127 
128  Array<OneD, NekDouble> coll(2);
129  LocCoordToLocCollapsed(coords,coll);
130 
131  const int nq0 = m_base[0]->GetNumPoints();
132  const int nq1 = m_base[1]->GetNumPoints();
133 
134  Array<OneD, NekDouble> wsp(nq1);
135  for (int i = 0; i < nq1; ++i)
136  {
137  wsp[i] = StdExpansion::BaryEvaluate<0>(
138  coll[0], &physvals[0] + i * nq0);
139  }
140 
141  return StdExpansion::BaryEvaluate<1>(coll[1], &wsp[0]);
142  }
#define ASSERTL2(condition, msg)
Assert Level 2 – Debugging which is used FULLDEBUG compilation mode. This level assert is designed to...
Definition: ErrorUtil.hpp:274
void LocCoordToLocCollapsed(const Array< OneD, const NekDouble > &xi, Array< OneD, NekDouble > &eta)
Convert local cartesian coordinate xi into local collapsed coordinates eta.
Definition: StdExpansion.h:982
static const NekDouble kNekZeroTol

References ASSERTL2, Nektar::NekConstants::kNekZeroTol, Nektar::StdRegions::StdExpansion::LocCoordToLocCollapsed(), and Nektar::StdRegions::StdExpansion::m_base.

Referenced by Nektar::StdRegions::StdNodalTriExp::GenNBasisTransMatrix().

◆ v_PhysEvaluate() [2/2]

NekDouble Nektar::StdRegions::StdExpansion2D::v_PhysEvaluate ( const Array< OneD, DNekMatSharedPtr > &  I,
const Array< OneD, const NekDouble > &  physvals 
)
protectedvirtual

Reimplemented from Nektar::StdRegions::StdExpansion.

Definition at line 144 of file StdExpansion2D.cpp.

147  {
148  NekDouble val;
149  int i;
150  int nq0 = m_base[0]->GetNumPoints();
151  int nq1 = m_base[1]->GetNumPoints();
152  Array<OneD, NekDouble> wsp1(nq1);
153 
154  // interpolate first coordinate direction
155  for (i = 0; i < nq1;++i)
156  {
157  wsp1[i] = Blas::Ddot(nq0, &(I[0]->GetPtr())[0], 1,
158  &physvals[i * nq0], 1);
159  }
160 
161  // interpolate in second coordinate direction
162  val = Blas::Ddot(nq1, I[1]->GetPtr(), 1, wsp1, 1);
163 
164  return val;
165  }
static double Ddot(const int &n, const double *x, const int &incx, const double *y, const int &incy)
BLAS level 1: output = .
Definition: Blas.hpp:197

References Blas::Ddot(), and Nektar::StdRegions::StdExpansion::m_base.