Nektar++
CompressibleSolver.cpp
Go to the documentation of this file.
1 ///////////////////////////////////////////////////////////////////////////////
2 //
3 // File: CompressibleSolver.cpp
4 //
5 // For more information, please see: http://www.nektar.info
6 //
7 // The MIT License
8 //
9 // Copyright (c) 2006 Division of Applied Mathematics, Brown University (USA),
10 // Department of Aeronautics, Imperial College London (UK), and Scientific
11 // Computing and Imaging Institute, University of Utah (USA).
12 //
13 // Permission is hereby granted, free of charge, to any person obtaining a
14 // copy of this software and associated documentation files (the "Software"),
15 // to deal in the Software without restriction, including without limitation
16 // the rights to use, copy, modify, merge, publish, distribute, sublicense,
17 // and/or sell copies of the Software, and to permit persons to whom the
18 // Software is furnished to do so, subject to the following conditions:
19 //
20 // The above copyright notice and this permission notice shall be included
21 // in all copies or substantial portions of the Software.
22 //
23 // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
24 // OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
25 // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
26 // THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
27 // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
28 // FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
29 // DEALINGS IN THE SOFTWARE.
30 //
31 // Description: Compressible Riemann solver.
32 //
33 ///////////////////////////////////////////////////////////////////////////////
34 
35 #include "CompressibleSolver.h"
36 #include <boost/algorithm/string/predicate.hpp>
37 #include <boost/core/ignore_unused.hpp>
38 
39 namespace Nektar
40 {
43  : RiemannSolver(pSession), m_pointSolve(true)
44 {
45  m_requiresRotation = true;
46 
47  // Create equation of state object
48  std::string eosType;
49  pSession->LoadSolverInfo("EquationOfState", eosType, "IdealGas");
50  m_eos = GetEquationOfStateFactory().CreateInstance(eosType, pSession);
51  // Check if using ideal gas
52  m_idealGas = boost::iequals(eosType, "IdealGas");
53 }
54 
56  : RiemannSolver(), m_idealGas(true), m_pointSolve(true)
57 {
58  m_requiresRotation = true;
59 }
60 
62  const int nDim, const Array<OneD, const Array<OneD, NekDouble>> &Fwd,
63  const Array<OneD, const Array<OneD, NekDouble>> &Bwd,
65 {
66  if (m_pointSolve)
67  {
68  int expDim = nDim;
69  int nvariables = Fwd.size();
70 
71  NekDouble rhouf{}, rhovf{};
72 
73  if (expDim == 1)
74  {
75  for (int i = 0; i < Fwd[0].size(); ++i)
76  {
77  v_PointSolve(Fwd[0][i], Fwd[1][i], 0.0, 0.0, Fwd[2][i],
78  Bwd[0][i], Bwd[1][i], 0.0, 0.0, Bwd[2][i],
79  flux[0][i], flux[1][i], rhouf, rhovf, flux[2][i]);
80  }
81  }
82  else if (expDim == 2)
83  {
84  for (int i = 0; i < Fwd[0].size(); ++i)
85  {
86  v_PointSolve(Fwd[0][i], Fwd[1][i], Fwd[2][i], 0.0, Fwd[3][i],
87  Bwd[0][i], Bwd[1][i], Bwd[2][i], 0.0, Bwd[3][i],
88  flux[0][i], flux[1][i], flux[2][i], rhovf,
89  flux[3][i]);
90  }
91  }
92  else if (expDim == 3)
93  {
94  for (int i = 0; i < Fwd[0].size(); ++i)
95  {
96  v_PointSolve(Fwd[0][i], Fwd[1][i], Fwd[2][i], Fwd[3][i],
97  Fwd[4][i], Bwd[0][i], Bwd[1][i], Bwd[2][i],
98  Bwd[3][i], Bwd[4][i], flux[0][i], flux[1][i],
99  flux[2][i], flux[3][i], flux[4][i]);
100  }
101  }
102  }
103  else
104  {
105  v_ArraySolve(Fwd, Bwd, flux);
106  }
107 }
108 
110  NekDouble rhoL, NekDouble pL, NekDouble eL, NekDouble HL, NekDouble srL,
111  NekDouble rhoR, NekDouble pR, NekDouble eR, NekDouble HR, NekDouble srR,
112  NekDouble HRoe, NekDouble URoe2, NekDouble srLR)
113 {
114  boost::ignore_unused(HL, srL, HR, srR, srLR);
115 
116  static NekDouble gamma = m_params["gamma"]();
117  NekDouble cRoe;
118  if (m_idealGas)
119  {
120  cRoe = sqrt((gamma - 1.0) * (HRoe - 0.5 * URoe2));
121  }
122  else
123  {
124  // Calculate static enthalpy of left and right states
125  NekDouble hL = eL + pL / rhoL;
126  NekDouble hR = eR + pR / rhoR;
127 
128  // Get partial derivatives of P(rho,e)
129  NekDouble dpdeL = m_eos->GetDPDe_rho(rhoL, eL);
130  NekDouble dpdeR = m_eos->GetDPDe_rho(rhoR, eR);
131  NekDouble dpdrhoL = m_eos->GetDPDrho_e(rhoL, eL);
132  NekDouble dpdrhoR = m_eos->GetDPDrho_e(rhoR, eR);
133 
134  // Evaluate chi and kappa parameters
135  NekDouble chiL = dpdrhoL - eL / rhoL * dpdeL;
136  NekDouble kappaL = dpdeL / rhoL;
137  NekDouble chiR = dpdrhoR - eR / rhoR * dpdeR;
138  NekDouble kappaR = dpdeR / rhoR;
139 
140  //
141  // Calculate interface speed of sound using procedure from
142  // Vinokur, M.; Montagné, J.-L. "Generalized Flux-Vector
143  // Splitting and Roe Average for an Equilibrium Real Gas",
144  // JCP (1990).
145  //
146 
147  // Calculate averages
148  NekDouble avgChi = 0.5 * (chiL + chiR);
149  NekDouble avgKappa = 0.5 * (kappaL + kappaR);
150  NekDouble avgKappaH = 0.5 * (kappaL * hL + kappaR * hR);
151 
152  // Calculate jumps
153  NekDouble deltaP = pR - pL;
154  NekDouble deltaRho = rhoR - rhoL;
155  NekDouble deltaRhoe = rhoR * eR - rhoL * eL;
156 
157  // Evaluate dP: equation (64) from Vinokur-Montagné
158  NekDouble dP = deltaP - avgChi * deltaRho - avgKappa * deltaRhoe;
159  // s (eq 66)
160  NekDouble s = avgChi + avgKappaH;
161  // D (eq 65)
162  NekDouble D = (s * deltaRho) * (s * deltaRho) + deltaP * deltaP;
163  // chiRoe and kappaRoe (eq 66)
164  NekDouble chiRoe, kappaRoe;
165  NekDouble fac = D - deltaP * deltaRho;
167  {
168  chiRoe = (D * avgChi + s * s * deltaRho * dP) / fac;
169  kappaRoe = D * avgKappa / fac;
170  }
171  else
172  {
173  chiRoe = avgChi;
174  kappaRoe = avgKappa;
175  }
176  // Speed of sound (eq 53)
177  cRoe = sqrt(chiRoe + kappaRoe * (HRoe - 0.5 * URoe2));
178  }
179  return cRoe;
180 }
181 
182 } // namespace Nektar
virtual void v_PointSolve(ND rhoL, ND rhouL, ND rhovL, ND rhowL, ND EL, ND rhoR, ND rhouR, ND rhovR, ND rhowR, ND ER, ND &rhof, ND &rhouf, ND &rhovf, ND &rhowf, ND &Ef)
ND GetRoeSoundSpeed(ND rhoL, ND pL, ND eL, ND HL, ND srL, ND rhoR, ND pR, ND eR, ND HR, ND srR, ND HRoe, ND URoe2, ND srLR)
virtual void v_ArraySolve(const Array< OneD, const Array< OneD, ND >> &Fwd, const Array< OneD, const Array< OneD, ND >> &Bwd, Array< OneD, Array< OneD, ND >> &flux)
CompressibleSolver()
Programmatic ctor.
EquationOfStateSharedPtr m_eos
void v_Solve(const int nDim, const Array< OneD, const Array< OneD, ND >> &Fwd, const Array< OneD, const Array< OneD, ND >> &Bwd, Array< OneD, Array< OneD, ND >> &flux) override
tBaseSharedPtr CreateInstance(tKey idKey, tParam... args)
Create an instance of the class referred to by idKey.
Definition: NekFactory.hpp:144
The RiemannSolver class provides an abstract interface under which solvers for various Riemann proble...
Definition: RiemannSolver.h:58
bool m_requiresRotation
Indicates whether the Riemann solver requires a rotation to be applied to the velocity fields.
std::map< std::string, RSParamFuncType > m_params
Map of parameter function types.
std::shared_ptr< SessionReader > SessionReaderSharedPtr
static const NekDouble kNekZeroTol
The above copyright notice and this permission notice shall be included.
Definition: CoupledSolver.h:1
EquationOfStateFactory & GetEquationOfStateFactory()
Declaration of the equation of state factory singleton.
double NekDouble
scalarT< T > abs(scalarT< T > in)
Definition: scalar.hpp:295
scalarT< T > sqrt(scalarT< T > in)
Definition: scalar.hpp:291