Nektar++
ProcessCFL.cpp
Go to the documentation of this file.
1 ////////////////////////////////////////////////////////////////////////////////
2 //
3 // File: ProcessCFL.cpp
4 //
5 // For more information, please see: http://www.nektar.info/
6 //
7 // The MIT License
8 //
9 // Copyright (c) 2006 Division of Applied Mathematics, Brown University (USA),
10 // Department of Aeronautics, Imperial College London (UK), and Scientific
11 // Computing and Imaging Institute, University of Utah (USA).
12 //
13 // Permission is hereby granted, free of charge, to any person obtaining a
14 // copy of this software and associated documentation files (the "Software"),
15 // to deal in the Software without restriction, including without limitation
16 // the rights to use, copy, modify, merge, publish, distribute, sublicense,
17 // and/or sell copies of the Software, and to permit persons to whom the
18 // Software is furnished to do so, subject to the following conditions:
19 //
20 // The above copyright notice and this permission notice shall be included
21 // in all copies or substantial portions of the Software.
22 //
23 // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
24 // OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
25 // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
26 // THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
27 // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
28 // FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
29 // DEALINGS IN THE SOFTWARE.
30 //
31 // Description: Computes CFL number over the entire domain for the
32 // incompressible flow simulaiton. This is helpful in terms of debugging
33 // and tracing the evolution of CFL in time over the domain.
34 //
35 ////////////////////////////////////////////////////////////////////////////////
36 
37 #include <iostream>
38 #include <string>
39 using namespace std;
40 
41 #include <boost/core/ignore_unused.hpp>
42 
43 #include <GlobalMapping/Mapping.h>
45 
46 #include "ProcessCFL.h"
47 #include "ProcessMapping.h"
48 
49 namespace Nektar
50 {
51 namespace FieldUtils
52 {
53 
54 ModuleKey ProcessCFL::className = GetModuleFactory().RegisterCreatorFunction(
55  ModuleKey(eProcessModule, "CFL"), ProcessCFL::create,
56  "Computes CFL number for the entire domain for Incompressible flow.");
57 
58 ProcessCFL::ProcessCFL(FieldSharedPtr f) : ProcessModule(f)
59 {
60 }
61 
63 {
64 }
65 
66 void ProcessCFL::Process(po::variables_map &vm)
67 {
68  m_f->SetUpExp(vm);
69 
70  int expdim = m_f->m_graph->GetMeshDimension();
71  int nelmt = m_f->m_exp[0]->GetExpSize();
72  int nfields = m_f->m_variables.size();
73  int addfields = 1;
74  m_spacedim = expdim;
75 
76  NekDouble timeStep = m_f->m_session->GetParameter("TimeStep");
77  NekDouble cLambda = 0.2; // Spencer's book
78 
79  if (m_f->m_numHomogeneousDir == 1)
80  {
81  m_spacedim = 3;
82  }
83  ASSERTL0(m_f->m_numHomogeneousDir != 2,
84  "CFL for 3DH2D simulations is not supported");
85  ASSERTL0(m_spacedim != 1, "Error: CFL for a 1D problem is not supported");
86 
87  // Append field names
88  m_f->m_variables.push_back("CFL");
89 
90  // Skip in case of empty partition
91  if (m_f->m_exp[0]->GetNumElmts() == 0)
92  {
93  return;
94  }
95  int npoints = m_f->m_exp[0]->GetNpoints();
96  Array<OneD, NekDouble> outfield(npoints);
97 
98  int nstrips;
99  m_f->m_session->LoadParameter("Strip_Z", nstrips, 1);
100 
101  vector<MultiRegions::ExpListSharedPtr> Exp(nstrips * addfields);
102 
103  for (int s = 0; s < nstrips; ++s) // homogeneous strip varient
104  {
105  Array<OneD, Array<OneD, NekDouble>> velocityField(expdim);
106 
107  // Get the velocity field
108  GetVelocity(velocityField, s);
109 
110  // compute the max velocity in the std regions
111  Array<OneD, NekDouble> stdVel = GetMaxStdVelocity(velocityField);
112 
113  // get the maximum expansion order in each element
114  Array<OneD, int> expOrder =
115  m_f->m_exp[s * nfields + 0]->EvalBasisNumModesMaxPerExp();
116 
117  // compute the CFL number
118  Array<OneD, NekDouble> cfl(nelmt);
119  for (int el = 0; el < nelmt; ++el)
120  {
121  int order = std::max(expOrder[el] - 1, 1);
122  cfl[el] = timeStep * stdVel[el] * cLambda * order * order;
123  }
124 
125  int cnt = 0;
126  for (int el = 0; el < nelmt; ++el)
127  {
128  // using the field[0]==m_exp[s*nfields + 0]
129  int nquad = m_f->m_exp[s * nfields + 0]->GetExp(el)->GetTotPoints();
130  Vmath::Fill(nquad, cfl[el], &outfield[cnt], 1);
131  cnt += nquad;
132  }
133 
134  // temporary store the CFL number field for each strip
135  int n = s * addfields;
136  Exp[n] = m_f->AppendExpList(m_f->m_numHomogeneousDir);
137  Vmath::Vcopy(npoints, outfield, 1, Exp[n]->UpdatePhys(), 1);
138  Exp[n]->FwdTransLocalElmt(outfield, Exp[n]->UpdateCoeffs());
139  }
140 
141  // update the fields
142  for (int s = 0; s < nstrips; ++s)
143  {
144  for (int i = 0; i < addfields; ++i)
145  {
146  m_f->m_exp.insert(m_f->m_exp.begin() + s * (nfields + addfields) +
147  nfields + i,
148  Exp[s * addfields + i]);
149  }
150  }
151 }
152 
154  int strip)
155 {
156  int expdim = m_f->m_graph->GetMeshDimension();
157  int nfields = m_f->m_variables.size();
158  int npoints = m_f->m_exp[0]->GetNpoints();
159  if (boost::iequals(m_f->m_variables[0], "u"))
160  {
161  // IncNavierStokesSolver
162  // Using expdim instead of spacedim
163  // This is because for 3DH1D, only a 2D plane will be considered
164  for (int i = 0; i < expdim; ++i)
165  {
166  vel[i] = Array<OneD, NekDouble>(npoints);
167  Vmath::Vcopy(npoints, m_f->m_exp[strip * nfields + i]->GetPhys(), 1,
168  vel[i], 1);
169  }
170  }
171  else if (boost::iequals(m_f->m_variables[0], "rho") &&
172  boost::iequals(m_f->m_variables[1], "rhou"))
173  {
174  // CompressibleFlowSolver
175  ASSERTL0(false, "CFL calculation is not supported for the compressible "
176  "flow simulations at the moment");
177  }
178  else
179  {
180  // Unknown
181  ASSERTL0(false, "Could not identify velocity for ProcessCFL");
182  }
183 }
184 
185 /**
186  *
187  */
189  const Array<OneD, Array<OneD, NekDouble>> &vel, int strip)
190 {
191  int nfields = m_f->m_variables.size();
192  int n_points_0 = m_f->m_exp[0]->GetExp(0)->GetTotPoints();
193  int n_element = m_f->m_exp[0]->GetExpSize();
194  int nvel = vel.size();
195  int cnt;
196 
197  NekDouble pntVelocity;
198 
199  // Getting the standard velocity vector
200  Array<OneD, Array<OneD, NekDouble>> stdVelocity(nvel);
202  Array<OneD, NekDouble> maxV(n_element, 0.0);
204 
205  for (int i = 0; i < nvel; ++i)
206  {
207  stdVelocity[i] = Array<OneD, NekDouble>(n_points_0);
208  }
209 
210  cnt = 0.0;
211  for (int el = 0; el < n_element; ++el)
212  {
213  int n_points = m_f->m_exp[0]->GetExp(el)->GetTotPoints();
214  ptsKeys = m_f->m_exp[0]->GetExp(el)->GetPointsKeys();
215 
216  // reset local space
217  if (n_points != n_points_0)
218  {
219  for (int j = 0; j < nvel; ++j)
220  {
221  stdVelocity[j] = Array<OneD, NekDouble>(n_points, 0.0);
222  }
223  n_points_0 = n_points;
224  }
225  else
226  {
227  for (int j = 0; j < nvel; ++j)
228  {
229  Vmath::Zero(n_points, stdVelocity[j], 1);
230  }
231  }
232 
233  Array<TwoD, const NekDouble> gmat = m_f->m_exp[strip * nfields + 0]
234  ->GetExp(el)
235  ->GetGeom()
236  ->GetMetricInfo()
237  ->GetDerivFactors(ptsKeys);
238 
239  if (m_f->m_exp[strip * nfields + 0]
240  ->GetExp(el)
241  ->GetGeom()
242  ->GetMetricInfo()
243  ->GetGtype() == SpatialDomains::eDeformed)
244  {
245  for (int j = 0; j < nvel; ++j)
246  {
247  for (int k = 0; k < nvel; ++k)
248  {
249  Vmath::Vvtvp(n_points, gmat[k * nvel + j], 1,
250  tmp = vel[k] + cnt, 1, stdVelocity[j], 1,
251  stdVelocity[j], 1);
252  }
253  }
254  }
255  else
256  {
257  for (int j = 0; j < nvel; ++j)
258  {
259  for (int k = 0; k < nvel; ++k)
260  {
261  Vmath::Svtvp(n_points, gmat[k * nvel + j][0],
262  tmp = vel[k] + cnt, 1, stdVelocity[j], 1,
263  stdVelocity[j], 1);
264  }
265  }
266  }
267  cnt += n_points;
268 
269  // Calculate total velocity in stdVelocity[0]
270  Vmath::Vmul(n_points, stdVelocity[0], 1, stdVelocity[0], 1,
271  stdVelocity[0], 1);
272  for (int k = 1; k < nvel; ++k)
273  {
274  Vmath::Vvtvp(n_points, stdVelocity[k], 1, stdVelocity[k], 1,
275  stdVelocity[0], 1, stdVelocity[0], 1);
276  }
277  pntVelocity = Vmath::Vmax(n_points, stdVelocity[0], 1);
278  maxV[el] = sqrt(pntVelocity);
279  }
280 
281  return maxV;
282 }
283 } // namespace FieldUtils
284 } // namespace Nektar
#define ASSERTL0(condition, msg)
Definition: ErrorUtil.hpp:215
FieldSharedPtr m_f
Field object.
Definition: Module.h:225
Array< OneD, NekDouble > GetMaxStdVelocity(const Array< OneD, Array< OneD, NekDouble >> &vel, int strip=0)
Definition: ProcessCFL.cpp:188
virtual void Process(po::variables_map &vm)
Write mesh to output file.
Definition: ProcessCFL.cpp:66
void GetVelocity(Array< OneD, Array< OneD, NekDouble >> &vel, int strip=0)
Definition: ProcessCFL.cpp:153
Abstract base class for processing modules.
Definition: Module.h:260
tKey RegisterCreatorFunction(tKey idKey, CreatorFunction classCreator, std::string pDesc="")
Register a class with the factory.
Definition: NekFactory.hpp:198
std::shared_ptr< Field > FieldSharedPtr
Definition: Field.hpp:989
std::pair< ModuleType, std::string > ModuleKey
Definition: Module.h:285
ModuleFactory & GetModuleFactory()
Definition: Module.cpp:49
std::vector< PointsKey > PointsKeyVector
Definition: Points.h:250
@ eDeformed
Geometry is curved or has non-constant factors.
The above copyright notice and this permission notice shall be included.
Definition: CoupledSolver.h:1
double NekDouble
void Vmul(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Multiply vector z = x*y.
Definition: Vmath.cpp:209
void Svtvp(int n, const T alpha, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
svtvp (scalar times vector plus vector): z = alpha*x + y
Definition: Vmath.cpp:622
void Vvtvp(int n, const T *w, const int incw, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
vvtvp (vector times vector plus vector): z = w*x + y
Definition: Vmath.cpp:574
void Zero(int n, T *x, const int incx)
Zero vector.
Definition: Vmath.cpp:492
void Fill(int n, const T alpha, T *x, const int incx)
Fill a vector with a constant value.
Definition: Vmath.cpp:45
T Vmax(int n, const T *x, const int incx)
Return the maximum element in x – called vmax to avoid conflict with max.
Definition: Vmath.cpp:945
void Vcopy(int n, const T *x, const int incx, T *y, const int incy)
Definition: Vmath.cpp:1255
scalarT< T > sqrt(scalarT< T > in)
Definition: scalar.hpp:291