Nektar++
Public Member Functions | Static Public Member Functions | Static Public Attributes | List of all members
Nektar::FieldUtils::ProcessQCriterion Class Reference

This processing module calculates the Q Criterion and adds it as an extra-field to the output file. More...

#include <ProcessQCriterion.h>

Inheritance diagram for Nektar::FieldUtils::ProcessQCriterion:
[legend]

Public Member Functions

 ProcessQCriterion (FieldSharedPtr f)
 
virtual ~ProcessQCriterion ()
 
virtual void Process (po::variables_map &vm)
 Write mesh to output file. More...
 
virtual std::string GetModuleName ()
 
virtual std::string GetModuleDescription ()
 
virtual ModulePriority GetModulePriority ()
 
- Public Member Functions inherited from Nektar::FieldUtils::ProcessModule
 ProcessModule ()
 
 ProcessModule (FieldSharedPtr p_f)
 
- Public Member Functions inherited from Nektar::FieldUtils::Module
FIELD_UTILS_EXPORT Module (FieldSharedPtr p_f)
 
virtual ~Module ()=default
 
const ConfigOptionGetConfigOption (const std::string &key) const
 
FIELD_UTILS_EXPORT void RegisterConfig (std::string key, std::string value="")
 Register a configuration option with a module. More...
 
FIELD_UTILS_EXPORT void PrintConfig ()
 Print out all configuration options for a module. More...
 
FIELD_UTILS_EXPORT void SetDefaults ()
 Sets default configuration options for those which have not been set. More...
 
FIELD_UTILS_EXPORT void AddFile (std::string fileType, std::string fileName)
 
FIELD_UTILS_EXPORT void EvaluateTriFieldAtEquiSpacedPts (LocalRegions::ExpansionSharedPtr &exp, const Array< OneD, const NekDouble > &infield, Array< OneD, NekDouble > &outfield)
 

Static Public Member Functions

static std::shared_ptr< Modulecreate (FieldSharedPtr f)
 Creates an instance of this class. More...
 

Static Public Attributes

static ModuleKey className
 

Additional Inherited Members

- Public Attributes inherited from Nektar::FieldUtils::Module
FieldSharedPtr m_f
 Field object. More...
 
- Protected Member Functions inherited from Nektar::FieldUtils::Module
 Module ()
 
- Protected Attributes inherited from Nektar::FieldUtils::Module
std::map< std::string, ConfigOptionm_config
 List of configuration values. More...
 
std::set< std::string > m_allowedFiles
 List of allowed file formats. More...
 

Detailed Description

This processing module calculates the Q Criterion and adds it as an extra-field to the output file.

Definition at line 49 of file ProcessQCriterion.h.

Constructor & Destructor Documentation

◆ ProcessQCriterion()

Nektar::FieldUtils::ProcessQCriterion::ProcessQCriterion ( FieldSharedPtr  f)

Definition at line 55 of file ProcessQCriterion.cpp.

55  : ProcessModule(f)
56 {
57 }

◆ ~ProcessQCriterion()

Nektar::FieldUtils::ProcessQCriterion::~ProcessQCriterion ( )
virtual

Definition at line 59 of file ProcessQCriterion.cpp.

60 {
61 }

Member Function Documentation

◆ create()

static std::shared_ptr<Module> Nektar::FieldUtils::ProcessQCriterion::create ( FieldSharedPtr  f)
inlinestatic

Creates an instance of this class.

Definition at line 53 of file ProcessQCriterion.h.

54  {
56  }
static std::shared_ptr< DataType > AllocateSharedPtr(const Args &...args)
Allocate a shared pointer from the memory pool.

References Nektar::MemoryManager< DataType >::AllocateSharedPtr().

◆ GetModuleDescription()

virtual std::string Nektar::FieldUtils::ProcessQCriterion::GetModuleDescription ( )
inlinevirtual

Reimplemented from Nektar::FieldUtils::Module.

Definition at line 70 of file ProcessQCriterion.h.

71  {
72  return "Calculating Q Criterion";
73  }

◆ GetModuleName()

virtual std::string Nektar::FieldUtils::ProcessQCriterion::GetModuleName ( )
inlinevirtual

Implements Nektar::FieldUtils::Module.

Definition at line 65 of file ProcessQCriterion.h.

66  {
67  return "ProcessQCriterion";
68  }

◆ GetModulePriority()

virtual ModulePriority Nektar::FieldUtils::ProcessQCriterion::GetModulePriority ( )
inlinevirtual

Implements Nektar::FieldUtils::Module.

Definition at line 75 of file ProcessQCriterion.h.

76  {
77  return eModifyExp;
78  }

References Nektar::FieldUtils::eModifyExp.

◆ Process()

void Nektar::FieldUtils::ProcessQCriterion::Process ( po::variables_map &  vm)
virtual

Write mesh to output file.

Implements Nektar::FieldUtils::Module.

Definition at line 63 of file ProcessQCriterion.cpp.

64 {
65  m_f->SetUpExp(vm);
66 
67  int nfields = m_f->m_variables.size();
68  m_f->m_variables.push_back("Q");
69  // Skip in case of empty partition
70  if (m_f->m_exp[0]->GetNumElmts() == 0)
71  {
72  return;
73  }
74 
75  int i, s;
76  int expdim = m_f->m_graph->GetMeshDimension();
77  int spacedim = expdim + (m_f->m_numHomogeneousDir);
78 
79  ASSERTL0(
80  spacedim == 3 || spacedim == 2,
81  "ProcessQCriterion must be computed for a 2D, quasi-3D, or 3D case.");
82 
83  int npoints = m_f->m_exp[0]->GetNpoints();
84 
85  Array<OneD, Array<OneD, NekDouble>> grad(spacedim * spacedim);
86 
87  Array<OneD, NekDouble> omega(npoints, 0.);
88  Array<OneD, NekDouble> S(npoints, 0.);
89 
90  // Will store the Q-Criterion
91  Array<OneD, NekDouble> outfield(npoints);
92 
93  int nstrips;
94 
95  m_f->m_session->LoadParameter("Strip_Z", nstrips, 1);
96 
97  for (i = 0; i < spacedim * spacedim; ++i)
98  {
99  grad[i] = Array<OneD, NekDouble>(npoints);
100  }
101 
103 
104  NekDouble fac = 0.5;
105  if (spacedim == 2)
106  {
107  for (s = 0; s < nstrips; ++s) // homogeneous strip varient
108  {
109  for (i = 0; i < spacedim; ++i)
110  {
111  m_f->m_exp[s * nfields + i]->PhysDeriv(
112  m_f->m_exp[s * nfields + i]->GetPhys(), grad[i * spacedim],
113  grad[i * spacedim + 1]);
114  }
115 
116  // W_z = Vx - Uy
117  Vmath::Vsub(npoints, grad[1 * spacedim + 0], 1,
118  grad[0 * spacedim + 1], 1, outfield, 1);
119  // W_z^2
120  Vmath::Vmul(npoints, outfield, 1, outfield, 1, omega, 1);
121 
122  // Ux^2
123  Vmath::Vmul(npoints, grad[0 * spacedim + 0], 1,
124  grad[0 * spacedim + 0], 1, S, 1);
125  // Vy^2
126  Vmath::Vvtvp(npoints, grad[1 * spacedim + 1], 1,
127  grad[1 * spacedim + 1], 1, S, 1, S, 1);
128 
129  // Vx + Uy
130  Vmath::Vadd(npoints, grad[1 * spacedim + 0], 1,
131  grad[0 * spacedim + 1], 1, outfield, 1);
132  Vmath::Vmul(npoints, outfield, 1, outfield, 1, outfield, 1);
133  Vmath::Svtvp(npoints, fac, outfield, 1, S, 1, S, 1);
134 
135  Vmath::Svtvm(npoints, fac, omega, 1, S, 1, outfield, 1);
136  Vmath::Smul(npoints, fac, outfield, 1, outfield, 1);
137 
138  Exp = m_f->AppendExpList(m_f->m_numHomogeneousDir);
139  Vmath::Vcopy(npoints, outfield, 1, Exp->UpdatePhys(), 1);
140  Exp->FwdTransLocalElmt(outfield, Exp->UpdateCoeffs());
141 
142  auto it = m_f->m_exp.begin() + s * (nfields + 1) + nfields;
143  m_f->m_exp.insert(it, Exp);
144  }
145  }
146  else if (spacedim == 3)
147  {
148  Array<OneD, NekDouble> outfield1(npoints);
149  Array<OneD, NekDouble> outfield2(npoints);
150  Array<OneD, NekDouble> outfield3(npoints);
151  for (s = 0; s < nstrips; ++s) // homogeneous strip varient
152  {
153  for (i = 0; i < spacedim; ++i)
154  {
155  m_f->m_exp[s * nfields + i]->PhysDeriv(
156  m_f->m_exp[s * nfields + i]->GetPhys(), grad[i * spacedim],
157  grad[i * spacedim + 1], grad[i * spacedim + 2]);
158  }
159 
160  // W_x = Wy - Vz
161  Vmath::Vsub(npoints, grad[2 * spacedim + 1], 1,
162  grad[1 * spacedim + 2], 1, outfield1, 1);
163  // W_x^2
164  Vmath::Vmul(npoints, outfield1, 1, outfield1, 1, outfield1, 1);
165 
166  // W_y = Uz - Wx
167  Vmath::Vsub(npoints, grad[0 * spacedim + 2], 1,
168  grad[2 * spacedim + 0], 1, outfield2, 1);
169  // W_y^2
170  Vmath::Vmul(npoints, outfield2, 1, outfield2, 1, outfield2, 1);
171 
172  // W_z = Vx - Uy
173  Vmath::Vsub(npoints, grad[1 * spacedim + 0], 1,
174  grad[0 * spacedim + 1], 1, outfield3, 1);
175  // W_z^2
176  Vmath::Vmul(npoints, outfield3, 1, outfield3, 1, outfield3, 1);
177 
178  // Omega = 0.5*(W_x^2 + W_y^2 + W_z^2)
179  Vmath::Vadd(npoints, outfield1, 1, outfield2, 1, omega, 1);
180  Vmath::Vadd(npoints, omega, 1, outfield3, 1, omega, 1);
181  Vmath::Smul(npoints, fac, omega, 1, omega, 1);
182 
183  // Ux^2
184  Vmath::Vmul(npoints, grad[0 * spacedim + 0], 1,
185  grad[0 * spacedim + 0], 1, outfield1, 1);
186  // Vy^2
187  Vmath::Vmul(npoints, grad[1 * spacedim + 1], 1,
188  grad[1 * spacedim + 1], 1, outfield2, 1);
189  // Wz^2
190  Vmath::Vmul(npoints, grad[2 * spacedim + 2], 1,
191  grad[2 * spacedim + 2], 1, outfield3, 1);
192 
193  //
194  Vmath::Vadd(npoints, outfield1, 1, outfield2, 1, S, 1);
195  Vmath::Vadd(npoints, S, 1, outfield3, 1, S, 1);
196 
197  // Wy + Vz
198  Vmath::Vadd(npoints, grad[2 * spacedim + 1], 1,
199  grad[1 * spacedim + 2], 1, outfield1, 1);
200  Vmath::Vmul(npoints, outfield1, 1, outfield1, 1, outfield1, 1);
201 
202  // Uz + Wx
203  Vmath::Vadd(npoints, grad[0 * spacedim + 2], 1,
204  grad[2 * spacedim + 0], 1, outfield2, 1);
205  Vmath::Vmul(npoints, outfield2, 1, outfield2, 1, outfield2, 1);
206 
207  // Vx + Uy
208  Vmath::Vadd(npoints, grad[1 * spacedim + 0], 1,
209  grad[0 * spacedim + 1], 1, outfield3, 1);
210  Vmath::Vmul(npoints, outfield3, 1, outfield3, 1, outfield3, 1);
211 
212  Vmath::Vadd(npoints, outfield1, 1, outfield2, 1, outfield2, 1);
213  Vmath::Vadd(npoints, outfield2, 1, outfield3, 1, outfield3, 1);
214 
215  Vmath::Smul(npoints, fac, outfield3, 1, outfield3, 1);
216 
217  Vmath::Vadd(npoints, outfield3, 1, S, 1, S, 1);
218  Vmath::Vsub(npoints, omega, 1, S, 1, outfield, 1);
219 
220  Vmath::Smul(npoints, fac, outfield, 1, outfield, 1);
221 
222  Exp = m_f->AppendExpList(m_f->m_numHomogeneousDir);
223  Vmath::Vcopy(npoints, outfield, 1, Exp->UpdatePhys(), 1);
224  Exp->FwdTransLocalElmt(outfield, Exp->UpdateCoeffs());
225 
226  auto it = m_f->m_exp.begin() + s * (nfields + 1) + nfields;
227  m_f->m_exp.insert(it, Exp);
228  }
229  }
230 }
#define ASSERTL0(condition, msg)
Definition: ErrorUtil.hpp:215
FieldSharedPtr m_f
Field object.
Definition: Module.h:225
std::shared_ptr< ExpList > ExpListSharedPtr
Shared pointer to an ExpList object.
double NekDouble
void Vmul(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Multiply vector z = x*y.
Definition: Vmath.cpp:209
void Svtvp(int n, const T alpha, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
svtvp (scalar times vector plus vector): z = alpha*x + y
Definition: Vmath.cpp:622
void Vvtvp(int n, const T *w, const int incw, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
vvtvp (vector times vector plus vector): z = w*x + y
Definition: Vmath.cpp:574
void Svtvm(int n, const T alpha, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
svtvp (scalar times vector plus vector): z = alpha*x - y
Definition: Vmath.cpp:664
void Vadd(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Add vector z = x+y.
Definition: Vmath.cpp:359
void Smul(int n, const T alpha, const T *x, const int incx, T *y, const int incy)
Scalar multiply y = alpha*x.
Definition: Vmath.cpp:248
void Vcopy(int n, const T *x, const int incx, T *y, const int incy)
Definition: Vmath.cpp:1255
void Vsub(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Subtract vector z = x-y.
Definition: Vmath.cpp:419

References ASSERTL0, Nektar::FieldUtils::Module::m_f, Vmath::Smul(), Vmath::Svtvm(), Vmath::Svtvp(), Vmath::Vadd(), Vmath::Vcopy(), Vmath::Vmul(), Vmath::Vsub(), and Vmath::Vvtvp().

Member Data Documentation

◆ className

ModuleKey Nektar::FieldUtils::ProcessQCriterion::className
static
Initial value:
=
"Computes Q-Criterion.")
static std::shared_ptr< Module > create(FieldSharedPtr f)
Creates an instance of this class.
tKey RegisterCreatorFunction(tKey idKey, CreatorFunction classCreator, std::string pDesc="")
Register a class with the factory.
Definition: NekFactory.hpp:198
std::pair< ModuleType, std::string > ModuleKey
Definition: Module.h:285
ModuleFactory & GetModuleFactory()
Definition: Module.cpp:49

Definition at line 57 of file ProcessQCriterion.h.