Nektar++
Public Member Functions | Static Public Member Functions | Static Public Attributes | Protected Member Functions | Private Attributes | List of all members
Nektar::FieldUtils::ProcessVorticity Class Reference

This processing module calculates the vorticity and adds it as an extra-field to the output file. More...

#include <ProcessVorticity.h>

Inheritance diagram for Nektar::FieldUtils::ProcessVorticity:
[legend]

Public Member Functions

 ProcessVorticity (FieldSharedPtr f)
 
virtual ~ProcessVorticity ()
 
virtual void Process (po::variables_map &vm)
 Write mesh to output file. More...
 
virtual std::string GetModuleName ()
 
virtual std::string GetModuleDescription ()
 
virtual ModulePriority GetModulePriority ()
 
- Public Member Functions inherited from Nektar::FieldUtils::ProcessModule
 ProcessModule ()
 
 ProcessModule (FieldSharedPtr p_f)
 
- Public Member Functions inherited from Nektar::FieldUtils::Module
FIELD_UTILS_EXPORT Module (FieldSharedPtr p_f)
 
virtual ~Module ()=default
 
const ConfigOptionGetConfigOption (const std::string &key) const
 
FIELD_UTILS_EXPORT void RegisterConfig (std::string key, std::string value="")
 Register a configuration option with a module. More...
 
FIELD_UTILS_EXPORT void PrintConfig ()
 Print out all configuration options for a module. More...
 
FIELD_UTILS_EXPORT void SetDefaults ()
 Sets default configuration options for those which have not been set. More...
 
FIELD_UTILS_EXPORT void AddFile (std::string fileType, std::string fileName)
 
FIELD_UTILS_EXPORT void EvaluateTriFieldAtEquiSpacedPts (LocalRegions::ExpansionSharedPtr &exp, const Array< OneD, const NekDouble > &infield, Array< OneD, NekDouble > &outfield)
 

Static Public Member Functions

static std::shared_ptr< Modulecreate (FieldSharedPtr f)
 Creates an instance of this class. More...
 

Static Public Attributes

static ModuleKey className
 

Protected Member Functions

void GetVelocity (Array< OneD, Array< OneD, NekDouble >> &vel, int strip=0)
 
- Protected Member Functions inherited from Nektar::FieldUtils::Module
 Module ()
 

Private Attributes

int m_spacedim
 

Additional Inherited Members

- Public Attributes inherited from Nektar::FieldUtils::Module
FieldSharedPtr m_f
 Field object. More...
 
- Protected Attributes inherited from Nektar::FieldUtils::Module
std::map< std::string, ConfigOptionm_config
 List of configuration values. More...
 
std::set< std::string > m_allowedFiles
 List of allowed file formats. More...
 

Detailed Description

This processing module calculates the vorticity and adds it as an extra-field to the output file.

Definition at line 48 of file ProcessVorticity.h.

Constructor & Destructor Documentation

◆ ProcessVorticity()

Nektar::FieldUtils::ProcessVorticity::ProcessVorticity ( FieldSharedPtr  f)

Definition at line 57 of file ProcessVorticity.cpp.

57  : ProcessModule(f)
58 {
59 }

◆ ~ProcessVorticity()

Nektar::FieldUtils::ProcessVorticity::~ProcessVorticity ( )
virtual

Definition at line 61 of file ProcessVorticity.cpp.

62 {
63 }

Member Function Documentation

◆ create()

static std::shared_ptr<Module> Nektar::FieldUtils::ProcessVorticity::create ( FieldSharedPtr  f)
inlinestatic

Creates an instance of this class.

Definition at line 52 of file ProcessVorticity.h.

53  {
55  }
static std::shared_ptr< DataType > AllocateSharedPtr(const Args &...args)
Allocate a shared pointer from the memory pool.

References Nektar::MemoryManager< DataType >::AllocateSharedPtr().

◆ GetModuleDescription()

virtual std::string Nektar::FieldUtils::ProcessVorticity::GetModuleDescription ( )
inlinevirtual

Reimplemented from Nektar::FieldUtils::Module.

Definition at line 69 of file ProcessVorticity.h.

70  {
71  return "Calculating vorticity";
72  }

◆ GetModuleName()

virtual std::string Nektar::FieldUtils::ProcessVorticity::GetModuleName ( )
inlinevirtual

Implements Nektar::FieldUtils::Module.

Definition at line 64 of file ProcessVorticity.h.

65  {
66  return "ProcessVorticity";
67  }

◆ GetModulePriority()

virtual ModulePriority Nektar::FieldUtils::ProcessVorticity::GetModulePriority ( )
inlinevirtual

Implements Nektar::FieldUtils::Module.

Definition at line 74 of file ProcessVorticity.h.

75  {
76  return eModifyExp;
77  }

References Nektar::FieldUtils::eModifyExp.

◆ GetVelocity()

void Nektar::FieldUtils::ProcessVorticity::GetVelocity ( Array< OneD, Array< OneD, NekDouble >> &  vel,
int  strip = 0 
)
protected

Definition at line 220 of file ProcessVorticity.cpp.

222 {
223  int nfields = m_f->m_variables.size();
224  int npoints = m_f->m_exp[0]->GetNpoints();
225  if (boost::iequals(m_f->m_variables[0], "u"))
226  {
227  // IncNavierStokesSolver
228  for (int i = 0; i < m_spacedim; ++i)
229  {
230  vel[i] = Array<OneD, NekDouble>(npoints);
231  Vmath::Vcopy(npoints, m_f->m_exp[strip * nfields + i]->GetPhys(), 1,
232  vel[i], 1);
233  }
234  }
235  else if (boost::iequals(m_f->m_variables[0], "rho") &&
236  boost::iequals(m_f->m_variables[1], "rhou"))
237  {
238  // CompressibleFlowSolver
239  for (int i = 0; i < m_spacedim; ++i)
240  {
241  vel[i] = Array<OneD, NekDouble>(npoints);
242  Vmath::Vdiv(npoints, m_f->m_exp[strip * nfields + i + 1]->GetPhys(),
243  1, m_f->m_exp[strip * nfields + 0]->GetPhys(), 1,
244  vel[i], 1);
245  }
246  }
247  else
248  {
249  // Unknown
250  ASSERTL0(false, "Could not identify velocity for ProcessVorticity");
251  }
252 }
#define ASSERTL0(condition, msg)
Definition: ErrorUtil.hpp:215
FieldSharedPtr m_f
Field object.
Definition: Module.h:225
void Vdiv(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Multiply vector z = x/y.
Definition: Vmath.cpp:284
void Vcopy(int n, const T *x, const int incx, T *y, const int incy)
Definition: Vmath.cpp:1255

References ASSERTL0, Nektar::FieldUtils::Module::m_f, m_spacedim, Vmath::Vcopy(), and Vmath::Vdiv().

Referenced by Process().

◆ Process()

void Nektar::FieldUtils::ProcessVorticity::Process ( po::variables_map &  vm)
virtual

Write mesh to output file.

Implements Nektar::FieldUtils::Module.

Definition at line 65 of file ProcessVorticity.cpp.

66 {
67  m_f->SetUpExp(vm);
68 
69  int i, s;
70  int expdim = m_f->m_graph->GetMeshDimension();
71  m_spacedim = expdim;
72  if ((m_f->m_numHomogeneousDir) == 1 || (m_f->m_numHomogeneousDir) == 2)
73  {
74  m_spacedim = 3;
75  }
76  int nfields = m_f->m_variables.size();
77  ASSERTL0(m_spacedim != 1,
78  "Error: Vorticity for a 1D problem cannot be computed");
79  int addfields = (m_spacedim == 2) ? 1 : 3;
80 
81  // Append field names
82  if (addfields == 1)
83  {
84  m_f->m_variables.push_back("W_z");
85  }
86  else
87  {
88  m_f->m_variables.push_back("W_x");
89  m_f->m_variables.push_back("W_y");
90  m_f->m_variables.push_back("W_z");
91  }
92 
93  // Skip in case of empty partition
94  if (m_f->m_exp[0]->GetNumElmts() == 0)
95  {
96  return;
97  }
98  int npoints = m_f->m_exp[0]->GetNpoints();
99  Array<OneD, Array<OneD, NekDouble>> grad(m_spacedim * m_spacedim);
100  Array<OneD, Array<OneD, NekDouble>> outfield(addfields);
101 
102  int nstrips;
103 
104  m_f->m_session->LoadParameter("Strip_Z", nstrips, 1);
105 
106  for (i = 0; i < m_spacedim * m_spacedim; ++i)
107  {
108  grad[i] = Array<OneD, NekDouble>(npoints);
109  }
110 
111  for (i = 0; i < addfields; ++i)
112  {
113  outfield[i] = Array<OneD, NekDouble>(npoints);
114  }
115 
116  Array<OneD, Array<OneD, NekDouble>> tmp(m_spacedim);
117  for (int i = 0; i < m_spacedim; i++)
118  {
119  tmp[i] = Array<OneD, NekDouble>(npoints);
120  }
121 
122  vector<MultiRegions::ExpListSharedPtr> Exp(nstrips * addfields);
123 
124  // Get mapping
126 
127  for (s = 0; s < nstrips; ++s) // homogeneous strip varient
128  {
129  // Get velocity and convert to Cartesian system,
130  // if it is still in transformed system
131  Array<OneD, Array<OneD, NekDouble>> vel(m_spacedim);
132  GetVelocity(vel, s);
133  if (m_f->m_fieldMetaDataMap.count("MappingCartesianVel"))
134  {
135  if (m_f->m_fieldMetaDataMap["MappingCartesianVel"] == "False")
136  {
137  // Initialize arrays and copy velocity
138  if (m_f->m_exp[0]->GetWaveSpace())
139  {
140  for (int i = 0; i < m_spacedim; ++i)
141  {
142  m_f->m_exp[0]->HomogeneousBwdTrans(vel[i], vel[i]);
143  }
144  }
145  // Convert velocity to cartesian system
146  mapping->ContravarToCartesian(vel, vel);
147  // Convert back to wavespace if necessary
148  if (m_f->m_exp[0]->GetWaveSpace())
149  {
150  for (int i = 0; i < m_spacedim; ++i)
151  {
152  m_f->m_exp[0]->HomogeneousFwdTrans(vel[i], vel[i]);
153  }
154  }
155  }
156  }
157 
158  // Calculate Gradient & Vorticity
159  if (m_spacedim == 2)
160  {
161  for (i = 0; i < m_spacedim; ++i)
162  {
163  m_f->m_exp[s * nfields + i]->PhysDeriv(vel[i], tmp[0], tmp[1]);
164  mapping->CovarToCartesian(tmp, tmp);
165  for (int j = 0; j < m_spacedim; j++)
166  {
167  Vmath::Vcopy(npoints, tmp[j], 1, grad[i * m_spacedim + j],
168  1);
169  }
170  }
171  // W_z = Vx - Uy
172  Vmath::Vsub(npoints, grad[1 * m_spacedim + 0], 1,
173  grad[0 * m_spacedim + 1], 1, outfield[0], 1);
174  }
175  else
176  {
177  for (i = 0; i < m_spacedim; ++i)
178  {
179  m_f->m_exp[s * nfields + i]->PhysDeriv(vel[i], tmp[0], tmp[1],
180  tmp[2]);
181  mapping->CovarToCartesian(tmp, tmp);
182  for (int j = 0; j < m_spacedim; j++)
183  {
184  Vmath::Vcopy(npoints, tmp[j], 1, grad[i * m_spacedim + j],
185  1);
186  }
187  }
188 
189  // W_x = Wy - Vz
190  Vmath::Vsub(npoints, grad[2 * m_spacedim + 1], 1,
191  grad[1 * m_spacedim + 2], 1, outfield[0], 1);
192  // W_y = Uz - Wx
193  Vmath::Vsub(npoints, grad[0 * m_spacedim + 2], 1,
194  grad[2 * m_spacedim + 0], 1, outfield[1], 1);
195  // W_z = Vx - Uy
196  Vmath::Vsub(npoints, grad[1 * m_spacedim + 0], 1,
197  grad[0 * m_spacedim + 1], 1, outfield[2], 1);
198  }
199 
200  for (i = 0; i < addfields; ++i)
201  {
202  int n = s * addfields + i;
203  Exp[n] = m_f->AppendExpList(m_f->m_numHomogeneousDir);
204  Vmath::Vcopy(npoints, outfield[i], 1, Exp[n]->UpdatePhys(), 1);
205  Exp[n]->FwdTransLocalElmt(outfield[i], Exp[n]->UpdateCoeffs());
206  }
207  }
208 
209  for (s = 0; s < nstrips; ++s)
210  {
211  for (i = 0; i < addfields; ++i)
212  {
213  m_f->m_exp.insert(m_f->m_exp.begin() + s * (nfields + addfields) +
214  nfields + i,
215  Exp[s * addfields + i]);
216  }
217  }
218 }
static GlobalMapping::MappingSharedPtr GetMapping(FieldSharedPtr f)
void GetVelocity(Array< OneD, Array< OneD, NekDouble >> &vel, int strip=0)
GLOBAL_MAPPING_EXPORT typedef std::shared_ptr< Mapping > MappingSharedPtr
A shared pointer to a Mapping object.
Definition: Mapping.h:50
void Vsub(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Subtract vector z = x-y.
Definition: Vmath.cpp:419

References ASSERTL0, Nektar::FieldUtils::ProcessMapping::GetMapping(), GetVelocity(), Nektar::FieldUtils::Module::m_f, m_spacedim, Nektar::GlobalMapping::MappingSharedPtr, Vmath::Vcopy(), and Vmath::Vsub().

Member Data Documentation

◆ className

ModuleKey Nektar::FieldUtils::ProcessVorticity::className
static
Initial value:
=
"Computes vorticity field.")
static std::shared_ptr< Module > create(FieldSharedPtr f)
Creates an instance of this class.
tKey RegisterCreatorFunction(tKey idKey, CreatorFunction classCreator, std::string pDesc="")
Register a class with the factory.
Definition: NekFactory.hpp:198
std::pair< ModuleType, std::string > ModuleKey
Definition: Module.h:285
ModuleFactory & GetModuleFactory()
Definition: Module.cpp:49

Definition at line 56 of file ProcessVorticity.h.

◆ m_spacedim

int Nektar::FieldUtils::ProcessVorticity::m_spacedim
private

Definition at line 83 of file ProcessVorticity.h.

Referenced by GetVelocity(), and Process().