Nektar++
Public Member Functions | Protected Member Functions | Private Member Functions | List of all members
Nektar::StdRegions::StdExpansion2D Class Referenceabstract

#include <StdExpansion2D.h>

Inheritance diagram for Nektar::StdRegions::StdExpansion2D:
[legend]

Public Member Functions

 StdExpansion2D ()
 
 StdExpansion2D (int numcoeffs, const LibUtilities::BasisKey &Ba, const LibUtilities::BasisKey &Bb)
 
 StdExpansion2D (const StdExpansion2D &T)
 
virtual ~StdExpansion2D ()
 
void PhysTensorDeriv (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray_d0, Array< OneD, NekDouble > &outarray_d1)
 Calculate the 2D derivative in the local tensor/collapsed coordinate at the physical points. More...
 
NekDouble Integral (const Array< OneD, const NekDouble > &inarray, const Array< OneD, const NekDouble > &w0, const Array< OneD, const NekDouble > &w1)
 
void BwdTrans_SumFacKernel (const Array< OneD, const NekDouble > &base0, const Array< OneD, const NekDouble > &base1, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, Array< OneD, NekDouble > &wsp, bool doCheckCollDir0=true, bool doCheckCollDir1=true)
 
void IProductWRTBase_SumFacKernel (const Array< OneD, const NekDouble > &base0, const Array< OneD, const NekDouble > &base1, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, Array< OneD, NekDouble > &wsp, bool doCheckCollDir0=true, bool doCheckCollDir1=true)
 
- Public Member Functions inherited from Nektar::StdRegions::StdExpansion
 StdExpansion ()
 Default Constructor. More...
 
 StdExpansion (const int numcoeffs, const int numbases, const LibUtilities::BasisKey &Ba=LibUtilities::NullBasisKey, const LibUtilities::BasisKey &Bb=LibUtilities::NullBasisKey, const LibUtilities::BasisKey &Bc=LibUtilities::NullBasisKey)
 Constructor. More...
 
 StdExpansion (const StdExpansion &T)
 Copy Constructor. More...
 
virtual ~StdExpansion ()
 Destructor. More...
 
int GetNumBases () const
 This function returns the number of 1D bases used in the expansion. More...
 
const Array< OneD, const LibUtilities::BasisSharedPtr > & GetBase () const
 This function gets the shared point to basis. More...
 
const LibUtilities::BasisSharedPtrGetBasis (int dir) const
 This function gets the shared point to basis in the dir direction. More...
 
int GetNcoeffs (void) const
 This function returns the total number of coefficients used in the expansion. More...
 
int GetTotPoints () const
 This function returns the total number of quadrature points used in the element. More...
 
LibUtilities::BasisType GetBasisType (const int dir) const
 This function returns the type of basis used in the dir direction. More...
 
int GetBasisNumModes (const int dir) const
 This function returns the number of expansion modes in the dir direction. More...
 
int EvalBasisNumModesMax (void) const
 This function returns the maximum number of expansion modes over all local directions. More...
 
LibUtilities::PointsType GetPointsType (const int dir) const
 This function returns the type of quadrature points used in the dir direction. More...
 
int GetNumPoints (const int dir) const
 This function returns the number of quadrature points in the dir direction. More...
 
const Array< OneD, const NekDouble > & GetPoints (const int dir) const
 This function returns a pointer to the array containing the quadrature points in dir direction. More...
 
int GetNverts () const
 This function returns the number of vertices of the expansion domain. More...
 
int GetTraceNcoeffs (const int i) const
 This function returns the number of expansion coefficients belonging to the i-th trace. More...
 
int GetTraceIntNcoeffs (const int i) const
 
int GetTraceNumPoints (const int i) const
 This function returns the number of quadrature points belonging to the i-th trace. More...
 
const LibUtilities::BasisKey GetTraceBasisKey (const int i, int k=-1) const
 This function returns the basis key belonging to the i-th trace. More...
 
LibUtilities::PointsKey GetTracePointsKey (const int i, int k=-1) const
 This function returns the basis key belonging to the i-th trace. More...
 
int NumBndryCoeffs (void) const
 
int NumDGBndryCoeffs (void) const
 
const LibUtilities::PointsKey GetNodalPointsKey () const
 This function returns the type of expansion Nodal point type if defined. More...
 
int GetNtraces () const
 Returns the number of trace elements connected to this element. More...
 
LibUtilities::ShapeType DetShapeType () const
 This function returns the shape of the expansion domain. More...
 
std::shared_ptr< StdExpansionGetStdExp (void) const
 
std::shared_ptr< StdExpansionGetLinStdExp (void) const
 
int GetShapeDimension () const
 
bool IsBoundaryInteriorExpansion ()
 
bool IsNodalNonTensorialExp ()
 
void BwdTrans (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 This function performs the Backward transformation from coefficient space to physical space. More...
 
void FwdTrans (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 This function performs the Forward transformation from physical space to coefficient space. More...
 
void FwdTransBndConstrained (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
NekDouble Integral (const Array< OneD, const NekDouble > &inarray)
 This function integrates the specified function over the domain. More...
 
void FillMode (const int mode, Array< OneD, NekDouble > &outarray)
 This function fills the array outarray with the mode-th mode of the expansion. More...
 
void IProductWRTBase (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 this function calculates the inner product of a given function f with the different modes of the expansion More...
 
void IProductWRTBase (const Array< OneD, const NekDouble > &base, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, int coll_check)
 
void IProductWRTDerivBase (const int dir, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
void IProductWRTDirectionalDerivBase (const Array< OneD, const NekDouble > &direction, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
int GetElmtId ()
 Get the element id of this expansion when used in a list by returning value of m_elmt_id. More...
 
void SetElmtId (const int id)
 Set the element id of this expansion when used in a list by returning value of m_elmt_id. More...
 
void GetCoords (Array< OneD, NekDouble > &coords_1, Array< OneD, NekDouble > &coords_2=NullNekDouble1DArray, Array< OneD, NekDouble > &coords_3=NullNekDouble1DArray)
 this function returns the physical coordinates of the quadrature points of the expansion More...
 
void GetCoord (const Array< OneD, const NekDouble > &Lcoord, Array< OneD, NekDouble > &coord)
 given the coordinates of a point of the element in the local collapsed coordinate system, this function calculates the physical coordinates of the point More...
 
DNekMatSharedPtr GetStdMatrix (const StdMatrixKey &mkey)
 
DNekBlkMatSharedPtr GetStdStaticCondMatrix (const StdMatrixKey &mkey)
 
void NormVectorIProductWRTBase (const Array< OneD, const NekDouble > &Fx, Array< OneD, NekDouble > &outarray)
 
void NormVectorIProductWRTBase (const Array< OneD, const NekDouble > &Fx, const Array< OneD, NekDouble > &Fy, Array< OneD, NekDouble > &outarray)
 
void NormVectorIProductWRTBase (const Array< OneD, const NekDouble > &Fx, const Array< OneD, const NekDouble > &Fy, const Array< OneD, const NekDouble > &Fz, Array< OneD, NekDouble > &outarray)
 
void NormVectorIProductWRTBase (const Array< OneD, const Array< OneD, NekDouble >> &Fvec, Array< OneD, NekDouble > &outarray)
 
DNekScalBlkMatSharedPtr GetLocStaticCondMatrix (const LocalRegions::MatrixKey &mkey)
 
void DropLocStaticCondMatrix (const LocalRegions::MatrixKey &mkey)
 
int CalcNumberOfCoefficients (const std::vector< unsigned int > &nummodes, int &modes_offset)
 
NekDouble StdPhysEvaluate (const Array< OneD, const NekDouble > &Lcoord, const Array< OneD, const NekDouble > &physvals)
 
int GetCoordim ()
 
void GetBoundaryMap (Array< OneD, unsigned int > &outarray)
 
void GetInteriorMap (Array< OneD, unsigned int > &outarray)
 
int GetVertexMap (const int localVertexId, bool useCoeffPacking=false)
 
void GetTraceToElementMap (const int tid, Array< OneD, unsigned int > &maparray, Array< OneD, int > &signarray, Orientation traceOrient=eForwards, int P=-1, int Q=-1)
 
void GetTraceCoeffMap (const unsigned int traceid, Array< OneD, unsigned int > &maparray)
 
void GetElmtTraceToTraceMap (const unsigned int tid, Array< OneD, unsigned int > &maparray, Array< OneD, int > &signarray, Orientation traceOrient=eForwards, int P=-1, int Q=-1)
 
void GetTraceInteriorToElementMap (const int tid, Array< OneD, unsigned int > &maparray, Array< OneD, int > &signarray, const Orientation traceOrient=eForwards)
 
void GetTraceNumModes (const int tid, int &numModes0, int &numModes1, const Orientation traceOrient=eDir1FwdDir1_Dir2FwdDir2)
 
void MultiplyByQuadratureMetric (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
void MultiplyByStdQuadratureMetric (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
DNekMatSharedPtr CreateGeneralMatrix (const StdMatrixKey &mkey)
 this function generates the mass matrix \(\mathbf{M}[i][j] = \int \phi_i(\mathbf{x}) \phi_j(\mathbf{x}) d\mathbf{x}\) More...
 
void GeneralMatrixOp (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void MassMatrixOp (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void LaplacianMatrixOp (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void ReduceOrderCoeffs (int numMin, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
void SVVLaplacianFilter (Array< OneD, NekDouble > &array, const StdMatrixKey &mkey)
 
void ExponentialFilter (Array< OneD, NekDouble > &array, const NekDouble alpha, const NekDouble exponent, const NekDouble cutoff)
 
void LaplacianMatrixOp (const int k1, const int k2, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void WeakDerivMatrixOp (const int i, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void WeakDirectionalDerivMatrixOp (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void MassLevelCurvatureMatrixOp (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void LinearAdvectionDiffusionReactionMatrixOp (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey, bool addDiffusionTerm=true)
 
void HelmholtzMatrixOp (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
DNekMatSharedPtr GenMatrix (const StdMatrixKey &mkey)
 
void PhysDeriv (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &out_d0, Array< OneD, NekDouble > &out_d1=NullNekDouble1DArray, Array< OneD, NekDouble > &out_d2=NullNekDouble1DArray)
 
void PhysDeriv (const int dir, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
void PhysDeriv_s (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &out_ds)
 
void PhysDeriv_n (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &out_dn)
 
void PhysDirectionalDeriv (const Array< OneD, const NekDouble > &inarray, const Array< OneD, const NekDouble > &direction, Array< OneD, NekDouble > &outarray)
 
void StdPhysDeriv (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &out_d0, Array< OneD, NekDouble > &out_d1=NullNekDouble1DArray, Array< OneD, NekDouble > &out_d2=NullNekDouble1DArray)
 
void StdPhysDeriv (const int dir, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
NekDouble PhysEvaluate (const Array< OneD, const NekDouble > &coords, const Array< OneD, const NekDouble > &physvals)
 This function evaluates the expansion at a single (arbitrary) point of the domain. More...
 
NekDouble PhysEvaluate (const Array< OneD, DNekMatSharedPtr > &I, const Array< OneD, const NekDouble > &physvals)
 This function evaluates the expansion at a single (arbitrary) point of the domain. More...
 
NekDouble PhysEvaluateBasis (const Array< OneD, const NekDouble > &coords, int mode)
 This function evaluates the basis function mode mode at a point coords of the domain. More...
 
void LocCoordToLocCollapsed (const Array< OneD, const NekDouble > &xi, Array< OneD, NekDouble > &eta)
 Convert local cartesian coordinate xi into local collapsed coordinates eta. More...
 
void LocCollapsedToLocCoord (const Array< OneD, const NekDouble > &eta, Array< OneD, NekDouble > &xi)
 Convert local collapsed coordinates eta into local cartesian coordinate xi. More...
 
virtual int v_CalcNumberOfCoefficients (const std::vector< unsigned int > &nummodes, int &modes_offset)
 
virtual void v_NormVectorIProductWRTBase (const Array< OneD, const NekDouble > &Fx, Array< OneD, NekDouble > &outarray)
 
virtual void v_NormVectorIProductWRTBase (const Array< OneD, const NekDouble > &Fx, const Array< OneD, const NekDouble > &Fy, Array< OneD, NekDouble > &outarray)
 
virtual void v_NormVectorIProductWRTBase (const Array< OneD, const NekDouble > &Fx, const Array< OneD, const NekDouble > &Fy, const Array< OneD, const NekDouble > &Fz, Array< OneD, NekDouble > &outarray)
 
virtual void v_NormVectorIProductWRTBase (const Array< OneD, const Array< OneD, NekDouble >> &Fvec, Array< OneD, NekDouble > &outarray)
 
virtual DNekScalBlkMatSharedPtr v_GetLocStaticCondMatrix (const LocalRegions::MatrixKey &mkey)
 
virtual void v_DropLocStaticCondMatrix (const LocalRegions::MatrixKey &mkey)
 
NekDouble Linf (const Array< OneD, const NekDouble > &phys, const Array< OneD, const NekDouble > &sol=NullNekDouble1DArray)
 Function to evaluate the discrete \( L_\infty\) error \( |\epsilon|_\infty = \max |u - u_{exact}|\) where \( u_{exact}\) is given by the array sol. More...
 
NekDouble L2 (const Array< OneD, const NekDouble > &phys, const Array< OneD, const NekDouble > &sol=NullNekDouble1DArray)
 Function to evaluate the discrete \( L_2\) error, \( | \epsilon |_{2} = \left [ \int^1_{-1} [u - u_{exact}]^2 dx \right]^{1/2} d\xi_1 \) where \( u_{exact}\) is given by the array sol. More...
 
NekDouble H1 (const Array< OneD, const NekDouble > &phys, const Array< OneD, const NekDouble > &sol=NullNekDouble1DArray)
 Function to evaluate the discrete \( H^1\) error, \( | \epsilon |^1_{2} = \left [ \int^1_{-1} [u - u_{exact}]^2 + \nabla(u - u_{exact})\cdot\nabla(u - u_{exact})\cdot dx \right]^{1/2} d\xi_1 \) where \( u_{exact}\) is given by the array sol. More...
 
const LibUtilities::PointsKeyVector GetPointsKeys () const
 
DNekMatSharedPtr BuildInverseTransformationMatrix (const DNekScalMatSharedPtr &m_transformationmatrix)
 
void PhysInterpToSimplexEquiSpaced (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, int npset=-1)
 This function performs an interpolation from the physical space points provided at input into an array of equispaced points which are not the collapsed coordinate. So for a tetrahedron you will only get a tetrahedral number of values. More...
 
void GetSimplexEquiSpacedConnectivity (Array< OneD, int > &conn, bool standard=true)
 This function provides the connectivity of local simplices (triangles or tets) to connect the equispaced data points provided by PhysInterpToSimplexEquiSpaced. More...
 
void EquiSpacedToCoeffs (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 This function performs a projection/interpolation from the equispaced points sometimes used in post-processing onto the coefficient space. More...
 
template<class T >
std::shared_ptr< T > as ()
 
void IProductWRTBase_SumFac (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, bool multiplybyweights=true)
 
void GenStdMatBwdDeriv (const int dir, DNekMatSharedPtr &mat)
 

Protected Member Functions

virtual NekDouble v_PhysEvaluate (const Array< OneD, const NekDouble > &coords, const Array< OneD, const NekDouble > &physvals)
 This function evaluates the expansion at a single (arbitrary) point of the domain. More...
 
virtual NekDouble v_PhysEvaluate (const Array< OneD, DNekMatSharedPtr > &I, const Array< OneD, const NekDouble > &physvals)
 
virtual void v_BwdTrans_SumFacKernel (const Array< OneD, const NekDouble > &base0, const Array< OneD, const NekDouble > &base1, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, Array< OneD, NekDouble > &wsp, bool doCheckCollDir0, bool doCheckCollDir1)=0
 
virtual void v_IProductWRTBase_SumFacKernel (const Array< OneD, const NekDouble > &base0, const Array< OneD, const NekDouble > &base1, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, Array< OneD, NekDouble > &wsp, bool doCheckCollDir0, bool doCheckCollDir1)=0
 
virtual void v_LaplacianMatrixOp_MatFree (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdRegions::StdMatrixKey &mkey)
 
virtual void v_HelmholtzMatrixOp_MatFree (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdRegions::StdMatrixKey &mkey)
 
virtual void v_GetTraceCoeffMap (const unsigned int traceid, Array< OneD, unsigned int > &maparray)
 
virtual void v_GetElmtTraceToTraceMap (const unsigned int eid, Array< OneD, unsigned int > &maparray, Array< OneD, int > &signarray, Orientation edgeOrient, int P, int Q)
 Determine the mapping to re-orientate the coefficients along the element trace (assumed to align with the standard element) into the orientation of the local trace given by edgeOrient. More...
 
virtual void v_GetTraceToElementMap (const int eid, Array< OneD, unsigned int > &maparray, Array< OneD, int > &signarray, Orientation edgeOrient=eForwards, int P=-1, int Q=-1)
 
virtual void v_GenStdMatBwdDeriv (const int dir, DNekMatSharedPtr &mat)
 
- Protected Member Functions inherited from Nektar::StdRegions::StdExpansion
DNekMatSharedPtr CreateStdMatrix (const StdMatrixKey &mkey)
 
DNekBlkMatSharedPtr CreateStdStaticCondMatrix (const StdMatrixKey &mkey)
 Create the static condensation of a matrix when using a boundary interior decomposition. More...
 
void BwdTrans_MatOp (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
void BwdTrans_SumFac (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
void IProductWRTDerivBase_SumFac (const int dir, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
void IProductWRTDirectionalDerivBase_SumFac (const Array< OneD, const NekDouble > &direction, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
void GeneralMatrixOp_MatFree (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void MassMatrixOp_MatFree (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void LaplacianMatrixOp_MatFree (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void LaplacianMatrixOp_MatFree_Kernel (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, Array< OneD, NekDouble > &wsp)
 
void LaplacianMatrixOp_MatFree_GenericImpl (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void LaplacianMatrixOp_MatFree (const int k1, const int k2, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void WeakDerivMatrixOp_MatFree (const int i, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void WeakDirectionalDerivMatrixOp_MatFree (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void MassLevelCurvatureMatrixOp_MatFree (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void LinearAdvectionDiffusionReactionMatrixOp_MatFree (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey, bool addDiffusionTerm=true)
 
void HelmholtzMatrixOp_MatFree (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
void HelmholtzMatrixOp_MatFree_GenericImpl (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
 
virtual void v_SetCoeffsToOrientation (StdRegions::Orientation dir, Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
virtual void v_SetCoeffsToOrientation (Array< OneD, NekDouble > &coeffs, StdRegions::Orientation dir)
 
virtual NekDouble v_StdPhysEvaluate (const Array< OneD, const NekDouble > &Lcoord, const Array< OneD, const NekDouble > &physvals)
 
virtual void v_MultiplyByStdQuadratureMetric (const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
 
template<int DIR>
NekDouble BaryEvaluate (const NekDouble &coord, const NekDouble *physvals)
 This function performs the barycentric interpolation of the polynomial stored in coord at a point physvals using barycentric interpolation weights in direction. More...
 
template<int DIR>
NekDouble BaryEvaluateBasis (const NekDouble &coord, const int &mode)
 

Private Member Functions

virtual int v_GetShapeDimension () const
 
virtual int v_GetCoordim (void)
 

Additional Inherited Members

- Protected Attributes inherited from Nektar::StdRegions::StdExpansion
Array< OneD, LibUtilities::BasisSharedPtrm_base
 
int m_elmt_id
 
int m_ncoeffs
 
LibUtilities::NekManager< StdMatrixKey, DNekMat, StdMatrixKey::opLessm_stdMatrixManager
 
LibUtilities::NekManager< StdMatrixKey, DNekBlkMat, StdMatrixKey::opLessm_stdStaticCondMatrixManager
 

Detailed Description

Definition at line 48 of file StdExpansion2D.h.

Constructor & Destructor Documentation

◆ StdExpansion2D() [1/3]

Nektar::StdRegions::StdExpansion2D::StdExpansion2D ( )

Definition at line 48 of file StdExpansion2D.cpp.

49 {
50 }

◆ StdExpansion2D() [2/3]

Nektar::StdRegions::StdExpansion2D::StdExpansion2D ( int  numcoeffs,
const LibUtilities::BasisKey Ba,
const LibUtilities::BasisKey Bb 
)

Definition at line 52 of file StdExpansion2D.cpp.

54  : StdExpansion(numcoeffs, 2, Ba, Bb)
55 {
56 }
StdExpansion()
Default Constructor.

◆ StdExpansion2D() [3/3]

Nektar::StdRegions::StdExpansion2D::StdExpansion2D ( const StdExpansion2D T)

Definition at line 58 of file StdExpansion2D.cpp.

58  : StdExpansion(T)
59 {
60 }

◆ ~StdExpansion2D()

Nektar::StdRegions::StdExpansion2D::~StdExpansion2D ( )
virtual

Definition at line 62 of file StdExpansion2D.cpp.

63 {
64 }

Member Function Documentation

◆ BwdTrans_SumFacKernel()

void Nektar::StdRegions::StdExpansion2D::BwdTrans_SumFacKernel ( const Array< OneD, const NekDouble > &  base0,
const Array< OneD, const NekDouble > &  base1,
const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray,
Array< OneD, NekDouble > &  wsp,
bool  doCheckCollDir0 = true,
bool  doCheckCollDir1 = true 
)

Definition at line 193 of file StdExpansion2D.cpp.

199 {
200  v_BwdTrans_SumFacKernel(base0, base1, inarray, outarray, wsp,
201  doCheckCollDir0, doCheckCollDir1);
202 }
virtual void v_BwdTrans_SumFacKernel(const Array< OneD, const NekDouble > &base0, const Array< OneD, const NekDouble > &base1, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, Array< OneD, NekDouble > &wsp, bool doCheckCollDir0, bool doCheckCollDir1)=0

References v_BwdTrans_SumFacKernel().

Referenced by Nektar::StdRegions::StdQuadExp::v_BwdTrans_SumFac(), Nektar::StdRegions::StdTriExp::v_BwdTrans_SumFac(), v_HelmholtzMatrixOp_MatFree(), and v_LaplacianMatrixOp_MatFree().

◆ Integral()

NekDouble Nektar::StdRegions::StdExpansion2D::Integral ( const Array< OneD, const NekDouble > &  inarray,
const Array< OneD, const NekDouble > &  w0,
const Array< OneD, const NekDouble > &  w1 
)

Definition at line 166 of file StdExpansion2D.cpp.

169 {
170  int i;
171  NekDouble Int = 0.0;
172  int nquad0 = m_base[0]->GetNumPoints();
173  int nquad1 = m_base[1]->GetNumPoints();
174  Array<OneD, NekDouble> tmp(nquad0 * nquad1);
175 
176  // multiply by integration constants
177  for (i = 0; i < nquad1; ++i)
178  {
179  Vmath::Vmul(nquad0, &inarray[0] + i * nquad0, 1, w0.get(), 1,
180  &tmp[0] + i * nquad0, 1);
181  }
182 
183  for (i = 0; i < nquad0; ++i)
184  {
185  Vmath::Vmul(nquad1, &tmp[0] + i, nquad0, w1.get(), 1, &tmp[0] + i,
186  nquad0);
187  }
188  Int = Vmath::Vsum(nquad0 * nquad1, tmp, 1);
189 
190  return Int;
191 }
Array< OneD, LibUtilities::BasisSharedPtr > m_base
double NekDouble
void Vmul(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Multiply vector z = x*y.
Definition: Vmath.cpp:209
T Vsum(int n, const T *x, const int incx)
Subtract return sum(x)
Definition: Vmath.cpp:895

References Nektar::StdRegions::StdExpansion::m_base, Vmath::Vmul(), and Vmath::Vsum().

Referenced by Nektar::StdRegions::StdQuadExp::v_Integral(), and Nektar::StdRegions::StdTriExp::v_Integral().

◆ IProductWRTBase_SumFacKernel()

void Nektar::StdRegions::StdExpansion2D::IProductWRTBase_SumFacKernel ( const Array< OneD, const NekDouble > &  base0,
const Array< OneD, const NekDouble > &  base1,
const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray,
Array< OneD, NekDouble > &  wsp,
bool  doCheckCollDir0 = true,
bool  doCheckCollDir1 = true 
)

◆ PhysTensorDeriv()

void Nektar::StdRegions::StdExpansion2D::PhysTensorDeriv ( const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray_d0,
Array< OneD, NekDouble > &  outarray_d1 
)

Calculate the 2D derivative in the local tensor/collapsed coordinate at the physical points.

This function is independent of the expansion basis and can therefore be defined for all tensor product distribution of quadrature points in a generic manner. The key operations are:

  • \( \frac{d}{d\eta_1} \rightarrow {\bf D^T_0 u } \)
  • \( \frac{d}{d\eta_2} \rightarrow {\bf D_1 u } \)
Parameters
inarrayarray of physical points to be differentiated
outarray_d0the resulting array of derivative in the \(\eta_1\) direction will be stored in outarray_d0 as output of the function
outarray_d1the resulting array of derivative in the \(\eta_2\) direction will be stored in outarray_d1 as output of the function

Recall that: \( \hspace{1cm} \begin{array}{llll} \mbox{Shape} & \mbox{Cartesian coordinate range} & \mbox{Collapsed coord.} & \mbox{Collapsed coordinate definition}\\ \mbox{Quadrilateral} & -1 \leq \xi_1,\xi_2 \leq 1 & -1 \leq \eta_1,\eta_2 \leq 1 & \eta_1 = \xi_1, \eta_2 = \xi_2\\ \mbox{Triangle} & -1 \leq \xi_1,\xi_2; \xi_1+\xi_2 \leq 0 & -1 \leq \eta_1,\eta_2 \leq 1 & \eta_1 = \frac{2(1+\xi_1)}{(1-\xi_2)}-1, \eta_2 = \xi_2 \\ \end{array} \)

Definition at line 69 of file StdExpansion2D.cpp.

72 {
73  int nquad0 = m_base[0]->GetNumPoints();
74  int nquad1 = m_base[1]->GetNumPoints();
75 
76  if (outarray_d0.size() > 0) // calculate du/dx_0
77  {
78  DNekMatSharedPtr D0 = m_base[0]->GetD();
79  if (inarray.data() == outarray_d0.data())
80  {
81  Array<OneD, NekDouble> wsp(nquad0 * nquad1);
82  Vmath::Vcopy(nquad0 * nquad1, inarray.get(), 1, wsp.get(), 1);
83  Blas::Dgemm('N', 'N', nquad0, nquad1, nquad0, 1.0,
84  &(D0->GetPtr())[0], nquad0, &wsp[0], nquad0, 0.0,
85  &outarray_d0[0], nquad0);
86  }
87  else
88  {
89  Blas::Dgemm('N', 'N', nquad0, nquad1, nquad0, 1.0,
90  &(D0->GetPtr())[0], nquad0, &inarray[0], nquad0, 0.0,
91  &outarray_d0[0], nquad0);
92  }
93  }
94 
95  if (outarray_d1.size() > 0) // calculate du/dx_1
96  {
97  DNekMatSharedPtr D1 = m_base[1]->GetD();
98  if (inarray.data() == outarray_d1.data())
99  {
100  Array<OneD, NekDouble> wsp(nquad0 * nquad1);
101  Vmath::Vcopy(nquad0 * nquad1, inarray.get(), 1, wsp.get(), 1);
102  Blas::Dgemm('N', 'T', nquad0, nquad1, nquad1, 1.0, &wsp[0], nquad0,
103  &(D1->GetPtr())[0], nquad1, 0.0, &outarray_d1[0],
104  nquad0);
105  }
106  else
107  {
108  Blas::Dgemm('N', 'T', nquad0, nquad1, nquad1, 1.0, &inarray[0],
109  nquad0, &(D1->GetPtr())[0], nquad1, 0.0,
110  &outarray_d1[0], nquad0);
111  }
112  }
113 }
static void Dgemm(const char &transa, const char &transb, const int &m, const int &n, const int &k, const double &alpha, const double *a, const int &lda, const double *b, const int &ldb, const double &beta, double *c, const int &ldc)
BLAS level 3: Matrix-matrix multiply C = A x B where op(A)[m x k], op(B)[k x n], C[m x n] DGEMM perfo...
Definition: Blas.hpp:368
std::shared_ptr< DNekMat > DNekMatSharedPtr
Definition: NekTypeDefs.hpp:75
void Vcopy(int n, const T *x, const int incx, T *y, const int incy)
Definition: Vmath.cpp:1255

References Blas::Dgemm(), Nektar::StdRegions::StdExpansion::m_base, and Vmath::Vcopy().

Referenced by Nektar::StdRegions::StdQuadExp::v_PhysDeriv(), and Nektar::StdRegions::StdTriExp::v_PhysDeriv().

◆ v_BwdTrans_SumFacKernel()

virtual void Nektar::StdRegions::StdExpansion2D::v_BwdTrans_SumFacKernel ( const Array< OneD, const NekDouble > &  base0,
const Array< OneD, const NekDouble > &  base1,
const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray,
Array< OneD, NekDouble > &  wsp,
bool  doCheckCollDir0,
bool  doCheckCollDir1 
)
protectedpure virtual

◆ v_GenStdMatBwdDeriv()

void Nektar::StdRegions::StdExpansion2D::v_GenStdMatBwdDeriv ( const int  dir,
DNekMatSharedPtr mat 
)
protectedvirtual

Reimplemented from Nektar::StdRegions::StdExpansion.

Definition at line 215 of file StdExpansion2D.cpp.

216 {
217  ASSERTL1((dir == 0) || (dir == 1), "Invalid direction.");
218 
219  int nquad0 = m_base[0]->GetNumPoints();
220  int nquad1 = m_base[1]->GetNumPoints();
221  int nqtot = nquad0 * nquad1;
222  int nmodes0 = m_base[0]->GetNumModes();
223 
224  Array<OneD, NekDouble> tmp1(2 * nqtot + m_ncoeffs + nmodes0 * nquad1, 0.0);
225  Array<OneD, NekDouble> tmp3(tmp1 + 2 * nqtot);
226  Array<OneD, NekDouble> tmp4(tmp1 + 2 * nqtot + m_ncoeffs);
227 
228  switch (dir)
229  {
230  case 0:
231  for (int i = 0; i < nqtot; i++)
232  {
233  tmp1[i] = 1.0;
234  IProductWRTBase_SumFacKernel(m_base[0]->GetDbdata(),
235  m_base[1]->GetBdata(), tmp1, tmp3,
236  tmp4, false, true);
237  tmp1[i] = 0.0;
238 
239  for (int j = 0; j < m_ncoeffs; j++)
240  {
241  (*mat)(j, i) = tmp3[j];
242  }
243  }
244  break;
245  case 1:
246  for (int i = 0; i < nqtot; i++)
247  {
248  tmp1[i] = 1.0;
249  IProductWRTBase_SumFacKernel(m_base[0]->GetBdata(),
250  m_base[1]->GetDbdata(), tmp1, tmp3,
251  tmp4, true, false);
252  tmp1[i] = 0.0;
253 
254  for (int j = 0; j < m_ncoeffs; j++)
255  {
256  (*mat)(j, i) = tmp3[j];
257  }
258  }
259  break;
260  default:
261  NEKERROR(ErrorUtil::efatal, "Not a 2D expansion.");
262  break;
263  }
264 }
#define NEKERROR(type, msg)
Assert Level 0 – Fundamental assert which is used whether in FULLDEBUG, DEBUG or OPT compilation mode...
Definition: ErrorUtil.hpp:209
#define ASSERTL1(condition, msg)
Assert Level 1 – Debugging which is used whether in FULLDEBUG or DEBUG compilation mode....
Definition: ErrorUtil.hpp:249
void IProductWRTBase_SumFacKernel(const Array< OneD, const NekDouble > &base0, const Array< OneD, const NekDouble > &base1, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, Array< OneD, NekDouble > &wsp, bool doCheckCollDir0=true, bool doCheckCollDir1=true)

References ASSERTL1, Nektar::ErrorUtil::efatal, IProductWRTBase_SumFacKernel(), Nektar::StdRegions::StdExpansion::m_base, Nektar::StdRegions::StdExpansion::m_ncoeffs, and NEKERROR.

◆ v_GetCoordim()

virtual int Nektar::StdRegions::StdExpansion2D::v_GetCoordim ( void  )
inlineprivatevirtual

Reimplemented from Nektar::StdRegions::StdExpansion.

Reimplemented in Nektar::LocalRegions::TriExp, and Nektar::LocalRegions::QuadExp.

Definition at line 190 of file StdExpansion2D.h.

191  {
192  return 2;
193  }

◆ v_GetElmtTraceToTraceMap()

void Nektar::StdRegions::StdExpansion2D::v_GetElmtTraceToTraceMap ( const unsigned int  eid,
Array< OneD, unsigned int > &  maparray,
Array< OneD, int > &  signarray,
Orientation  edgeOrient,
int  P,
int  Q 
)
protectedvirtual

Determine the mapping to re-orientate the coefficients along the element trace (assumed to align with the standard element) into the orientation of the local trace given by edgeOrient.

Reimplemented from Nektar::StdRegions::StdExpansion.

Definition at line 389 of file StdExpansion2D.cpp.

392 {
393  // Q is only used in 2D traces.
394  boost::ignore_unused(Q);
395 
396  unsigned int i;
397 
398  int dir;
399  // determine basis direction for edge.
401  {
402  dir = (eid == 0) ? 0 : 1;
403  }
404  else
405  {
406  dir = eid % 2;
407  }
408 
409  int numModes = m_base[dir]->GetNumModes();
410 
411  // P is the desired length of the map
412  P = (P == -1) ? numModes : P;
413 
414  // decalare maparray
415  if (maparray.size() != P)
416  {
417  maparray = Array<OneD, unsigned int>(P);
418  }
419 
420  // fill default mapping as increasing index
421  for (i = 0; i < P; ++i)
422  {
423  maparray[i] = i;
424  }
425 
426  if (signarray.size() != P)
427  {
428  signarray = Array<OneD, int>(P, 1);
429  }
430  else
431  {
432  std::fill(signarray.get(), signarray.get() + P, 1);
433  }
434 
435  // Zero signmap and set maparray to zero if
436  // elemental modes are not as large as trace modes
437  for (i = numModes; i < P; ++i)
438  {
439  signarray[i] = 0.0;
440  maparray[i] = maparray[0];
441  }
442 
443  if (edgeOrient == eBackwards)
444  {
445  const LibUtilities::BasisType bType = GetBasisType(dir);
446 
447  if ((bType == LibUtilities::eModified_A) ||
448  (bType == LibUtilities::eModified_B))
449  {
450  std::swap(maparray[0], maparray[1]);
451 
452  for (i = 3; i < std::min(P, numModes); i += 2)
453  {
454  signarray[i] *= -1;
455  }
456  }
457  else if (bType == LibUtilities::eGLL_Lagrange ||
459  {
460  ASSERTL1(P == numModes, "Different trace space edge dimension "
461  "and element edge dimension not currently "
462  "possible for GLL-Lagrange bases");
463 
464  std::reverse(maparray.get(), maparray.get() + P);
465  }
466  else
467  {
468  ASSERTL0(false, "Mapping not defined for this type of basis");
469  }
470  }
471 }
#define ASSERTL0(condition, msg)
Definition: ErrorUtil.hpp:215
LibUtilities::BasisType GetBasisType(const int dir) const
This function returns the type of basis used in the dir direction.
Definition: StdExpansion.h:163
LibUtilities::ShapeType DetShapeType() const
This function returns the shape of the expansion domain.
Definition: StdExpansion.h:375
@ eModified_B
Principle Modified Functions .
Definition: BasisType.h:51
@ eGauss_Lagrange
Lagrange Polynomials using the Gauss points.
Definition: BasisType.h:59
@ eGLL_Lagrange
Lagrange for SEM basis .
Definition: BasisType.h:58
@ eModified_A
Principle Modified Functions .
Definition: BasisType.h:50

References ASSERTL0, ASSERTL1, Nektar::StdRegions::StdExpansion::DetShapeType(), Nektar::StdRegions::eBackwards, Nektar::LibUtilities::eGauss_Lagrange, Nektar::LibUtilities::eGLL_Lagrange, Nektar::LibUtilities::eModified_A, Nektar::LibUtilities::eModified_B, Nektar::LibUtilities::eTriangle, Nektar::StdRegions::StdExpansion::GetBasisType(), Nektar::StdRegions::StdExpansion::m_base, and Nektar::LibUtilities::P.

Referenced by v_GetTraceToElementMap().

◆ v_GetShapeDimension()

virtual int Nektar::StdRegions::StdExpansion2D::v_GetShapeDimension ( ) const
inlineprivatevirtual

Reimplemented from Nektar::StdRegions::StdExpansion.

Definition at line 185 of file StdExpansion2D.h.

186  {
187  return 2;
188  }

◆ v_GetTraceCoeffMap()

void Nektar::StdRegions::StdExpansion2D::v_GetTraceCoeffMap ( const unsigned int  traceid,
Array< OneD, unsigned int > &  maparray 
)
protectedvirtual

Reimplemented from Nektar::StdRegions::StdExpansion.

Reimplemented in Nektar::StdRegions::StdTriExp, and Nektar::StdRegions::StdQuadExp.

Definition at line 375 of file StdExpansion2D.cpp.

377 {
378  boost::ignore_unused(traceid, maparray);
379 
380  ASSERTL0(false,
381  "This method must be defined at the individual shape level");
382 }

References ASSERTL0.

Referenced by v_GetTraceToElementMap().

◆ v_GetTraceToElementMap()

void Nektar::StdRegions::StdExpansion2D::v_GetTraceToElementMap ( const int  eid,
Array< OneD, unsigned int > &  maparray,
Array< OneD, int > &  signarray,
Orientation  edgeOrient = eForwards,
int  P = -1,
int  Q = -1 
)
protectedvirtual

Reimplemented from Nektar::StdRegions::StdExpansion.

Reimplemented in Nektar::StdRegions::StdNodalTriExp.

Definition at line 473 of file StdExpansion2D.cpp.

478 {
479  Array<OneD, unsigned int> map1, map2;
480  v_GetTraceCoeffMap(eid, map1);
481  v_GetElmtTraceToTraceMap(eid, map2, signarray, edgeOrient, P, Q);
482 
483  if (maparray.size() != map2.size())
484  {
485  maparray = Array<OneD, unsigned int>(map2.size());
486  }
487 
488  for (int i = 0; i < map2.size(); ++i)
489  {
490  maparray[i] = map1[map2[i]];
491  }
492 }
virtual void v_GetElmtTraceToTraceMap(const unsigned int eid, Array< OneD, unsigned int > &maparray, Array< OneD, int > &signarray, Orientation edgeOrient, int P, int Q)
Determine the mapping to re-orientate the coefficients along the element trace (assumed to align with...
virtual void v_GetTraceCoeffMap(const unsigned int traceid, Array< OneD, unsigned int > &maparray)

References Nektar::LibUtilities::P, v_GetElmtTraceToTraceMap(), and v_GetTraceCoeffMap().

◆ v_HelmholtzMatrixOp_MatFree()

void Nektar::StdRegions::StdExpansion2D::v_HelmholtzMatrixOp_MatFree ( const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray,
const StdRegions::StdMatrixKey mkey 
)
protectedvirtual

Reimplemented from Nektar::StdRegions::StdExpansion.

Definition at line 315 of file StdExpansion2D.cpp.

318 {
319  if (mkey.GetNVarCoeff() == 0 &&
320  !mkey.ConstFactorExists(StdRegions::eFactorCoeffD00) &&
321  !mkey.ConstFactorExists(StdRegions::eFactorSVVCutoffRatio))
322  {
323  using std::max;
324 
325  int nquad0 = m_base[0]->GetNumPoints();
326  int nquad1 = m_base[1]->GetNumPoints();
327  int nqtot = nquad0 * nquad1;
328  int nmodes0 = m_base[0]->GetNumModes();
329  int nmodes1 = m_base[1]->GetNumModes();
330  int wspsize =
331  max(max(max(nqtot, m_ncoeffs), nquad1 * nmodes0), nquad0 * nmodes1);
332  NekDouble lambda = mkey.GetConstFactor(StdRegions::eFactorLambda);
333 
334  const Array<OneD, const NekDouble> &base0 = m_base[0]->GetBdata();
335  const Array<OneD, const NekDouble> &base1 = m_base[1]->GetBdata();
336 
337  // Allocate temporary storage
338  Array<OneD, NekDouble> wsp0(5 * wspsize); // size wspsize
339  Array<OneD, NekDouble> wsp1(wsp0 + wspsize); // size wspsize
340  Array<OneD, NekDouble> wsp2(wsp0 + 2 * wspsize); // size 3*wspsize
341 
342  if (!(m_base[0]->Collocation() && m_base[1]->Collocation()))
343  {
344  // MASS MATRIX OPERATION
345  // The following is being calculated:
346  // wsp0 = B * u_hat = u
347  // wsp1 = W * wsp0
348  // outarray = B^T * wsp1 = B^T * W * B * u_hat = M * u_hat
349  BwdTrans_SumFacKernel(base0, base1, inarray, wsp0, wsp2, true,
350  true);
351  MultiplyByQuadratureMetric(wsp0, wsp1);
352  IProductWRTBase_SumFacKernel(base0, base1, wsp1, outarray, wsp2,
353  true, true);
354 
355  LaplacianMatrixOp_MatFree_Kernel(wsp0, wsp1, wsp2);
356  }
357  else
358  {
359  MultiplyByQuadratureMetric(inarray, outarray);
360  LaplacianMatrixOp_MatFree_Kernel(inarray, wsp1, wsp2);
361  }
362 
363  // outarray = lambda * outarray + wsp1
364  // = (lambda * M + L ) * u_hat
365  Vmath::Svtvp(m_ncoeffs, lambda, &outarray[0], 1, &wsp1[0], 1,
366  &outarray[0], 1);
367  }
368  else
369  {
371  mkey);
372  }
373 }
void BwdTrans_SumFacKernel(const Array< OneD, const NekDouble > &base0, const Array< OneD, const NekDouble > &base1, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, Array< OneD, NekDouble > &wsp, bool doCheckCollDir0=true, bool doCheckCollDir1=true)
void MultiplyByQuadratureMetric(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray)
Definition: StdExpansion.h:731
void HelmholtzMatrixOp_MatFree_GenericImpl(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)
void LaplacianMatrixOp_MatFree_Kernel(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, Array< OneD, NekDouble > &wsp)
void Svtvp(int n, const T alpha, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
svtvp (scalar times vector plus vector): z = alpha*x + y
Definition: Vmath.cpp:622

References BwdTrans_SumFacKernel(), Nektar::StdRegions::StdMatrixKey::ConstFactorExists(), Nektar::StdRegions::eFactorCoeffD00, Nektar::StdRegions::eFactorLambda, Nektar::StdRegions::eFactorSVVCutoffRatio, Nektar::StdRegions::StdMatrixKey::GetConstFactor(), Nektar::StdRegions::StdMatrixKey::GetNVarCoeff(), Nektar::StdRegions::StdExpansion::HelmholtzMatrixOp_MatFree_GenericImpl(), IProductWRTBase_SumFacKernel(), Nektar::StdRegions::StdExpansion::LaplacianMatrixOp_MatFree_Kernel(), Nektar::StdRegions::StdExpansion::m_base, Nektar::StdRegions::StdExpansion::m_ncoeffs, Nektar::StdRegions::StdExpansion::MultiplyByQuadratureMetric(), and Vmath::Svtvp().

Referenced by Nektar::StdRegions::StdQuadExp::v_HelmholtzMatrixOp(), and Nektar::StdRegions::StdTriExp::v_HelmholtzMatrixOp().

◆ v_IProductWRTBase_SumFacKernel()

virtual void Nektar::StdRegions::StdExpansion2D::v_IProductWRTBase_SumFacKernel ( const Array< OneD, const NekDouble > &  base0,
const Array< OneD, const NekDouble > &  base1,
const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray,
Array< OneD, NekDouble > &  wsp,
bool  doCheckCollDir0,
bool  doCheckCollDir1 
)
protectedpure virtual

◆ v_LaplacianMatrixOp_MatFree()

void Nektar::StdRegions::StdExpansion2D::v_LaplacianMatrixOp_MatFree ( const Array< OneD, const NekDouble > &  inarray,
Array< OneD, NekDouble > &  outarray,
const StdRegions::StdMatrixKey mkey 
)
protectedvirtual

Reimplemented from Nektar::StdRegions::StdExpansion.

Definition at line 266 of file StdExpansion2D.cpp.

269 {
270  if (mkey.GetNVarCoeff() == 0 &&
271  !mkey.ConstFactorExists(StdRegions::eFactorCoeffD00) &&
272  !mkey.ConstFactorExists(StdRegions::eFactorSVVCutoffRatio))
273  {
274  using std::max;
275 
276  // This implementation is only valid when there are no
277  // coefficients associated to the Laplacian operator
278  int nquad0 = m_base[0]->GetNumPoints();
279  int nquad1 = m_base[1]->GetNumPoints();
280  int nqtot = nquad0 * nquad1;
281  int nmodes0 = m_base[0]->GetNumModes();
282  int nmodes1 = m_base[1]->GetNumModes();
283  int wspsize =
284  max(max(max(nqtot, m_ncoeffs), nquad1 * nmodes0), nquad0 * nmodes1);
285 
286  const Array<OneD, const NekDouble> &base0 = m_base[0]->GetBdata();
287  const Array<OneD, const NekDouble> &base1 = m_base[1]->GetBdata();
288 
289  // Allocate temporary storage
290  Array<OneD, NekDouble> wsp0(4 * wspsize); // size wspsize
291  Array<OneD, NekDouble> wsp1(wsp0 + wspsize); // size 3*wspsize
292 
293  if (!(m_base[0]->Collocation() && m_base[1]->Collocation()))
294  {
295  // LAPLACIAN MATRIX OPERATION
296  // wsp0 = u = B * u_hat
297  // wsp1 = du_dxi1 = D_xi1 * wsp0 = D_xi1 * u
298  // wsp2 = du_dxi2 = D_xi2 * wsp0 = D_xi2 * u
299  BwdTrans_SumFacKernel(base0, base1, inarray, wsp0, wsp1, true,
300  true);
301  LaplacianMatrixOp_MatFree_Kernel(wsp0, outarray, wsp1);
302  }
303  else
304  {
305  LaplacianMatrixOp_MatFree_Kernel(inarray, outarray, wsp1);
306  }
307  }
308  else
309  {
311  mkey);
312  }
313 }
void LaplacianMatrixOp_MatFree_GenericImpl(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdMatrixKey &mkey)

References BwdTrans_SumFacKernel(), Nektar::StdRegions::StdMatrixKey::ConstFactorExists(), Nektar::StdRegions::eFactorCoeffD00, Nektar::StdRegions::eFactorSVVCutoffRatio, Nektar::StdRegions::StdMatrixKey::GetNVarCoeff(), Nektar::StdRegions::StdExpansion::LaplacianMatrixOp_MatFree_GenericImpl(), Nektar::StdRegions::StdExpansion::LaplacianMatrixOp_MatFree_Kernel(), Nektar::StdRegions::StdExpansion::m_base, and Nektar::StdRegions::StdExpansion::m_ncoeffs.

Referenced by Nektar::StdRegions::StdQuadExp::v_LaplacianMatrixOp(), and Nektar::StdRegions::StdTriExp::v_LaplacianMatrixOp().

◆ v_PhysEvaluate() [1/2]

NekDouble Nektar::StdRegions::StdExpansion2D::v_PhysEvaluate ( const Array< OneD, const NekDouble > &  coords,
const Array< OneD, const NekDouble > &  physvals 
)
protectedvirtual

This function evaluates the expansion at a single (arbitrary) point of the domain.

This function is a wrapper around the virtual function v_PhysEvaluate()

Based on the value of the expansion at the quadrature points, this function calculates the value of the expansion at an arbitrary single points (with coordinates \( \mathbf{x_c}\) given by the pointer coords). This operation, equivalent to

\[ u(\mathbf{x_c}) = \sum_p \phi_p(\mathbf{x_c}) \hat{u}_p \]

is evaluated using Lagrangian interpolants through the quadrature points:

\[ u(\mathbf{x_c}) = \sum_p h_p(\mathbf{x_c}) u_p\]

This function requires that the physical value array \(\mathbf{u}\) (implemented as the attribute #m_phys) is set.

Parameters
coordsthe coordinates of the single point
Returns
returns the value of the expansion at the single point

Reimplemented from Nektar::StdRegions::StdExpansion.

Reimplemented in Nektar::LocalRegions::TriExp, Nektar::LocalRegions::QuadExp, and Nektar::LocalRegions::NodalTriExp.

Definition at line 115 of file StdExpansion2D.cpp.

118 {
119  ASSERTL2(coords[0] > -1 - NekConstants::kNekZeroTol, "coord[0] < -1");
120  ASSERTL2(coords[0] < 1 + NekConstants::kNekZeroTol, "coord[0] > 1");
121  ASSERTL2(coords[1] > -1 - NekConstants::kNekZeroTol, "coord[1] < -1");
122  ASSERTL2(coords[1] < 1 + NekConstants::kNekZeroTol, "coord[1] > 1");
123 
124  Array<OneD, NekDouble> coll(2);
125  LocCoordToLocCollapsed(coords, coll);
126 
127  const int nq0 = m_base[0]->GetNumPoints();
128  const int nq1 = m_base[1]->GetNumPoints();
129 
130  Array<OneD, NekDouble> wsp(nq1);
131  for (int i = 0; i < nq1; ++i)
132  {
133  wsp[i] = StdExpansion::BaryEvaluate<0>(coll[0], &physvals[0] + i * nq0);
134  }
135 
136  return StdExpansion::BaryEvaluate<1>(coll[1], &wsp[0]);
137 }
#define ASSERTL2(condition, msg)
Assert Level 2 – Debugging which is used FULLDEBUG compilation mode. This level assert is designed to...
Definition: ErrorUtil.hpp:272
void LocCoordToLocCollapsed(const Array< OneD, const NekDouble > &xi, Array< OneD, NekDouble > &eta)
Convert local cartesian coordinate xi into local collapsed coordinates eta.
Definition: StdExpansion.h:974
static const NekDouble kNekZeroTol

References ASSERTL2, Nektar::NekConstants::kNekZeroTol, Nektar::StdRegions::StdExpansion::LocCoordToLocCollapsed(), and Nektar::StdRegions::StdExpansion::m_base.

Referenced by Nektar::StdRegions::StdNodalTriExp::GenNBasisTransMatrix().

◆ v_PhysEvaluate() [2/2]

NekDouble Nektar::StdRegions::StdExpansion2D::v_PhysEvaluate ( const Array< OneD, DNekMatSharedPtr > &  I,
const Array< OneD, const NekDouble > &  physvals 
)
protectedvirtual

Reimplemented from Nektar::StdRegions::StdExpansion.

Definition at line 139 of file StdExpansion2D.cpp.

142 {
143  NekDouble val;
144  int i;
145  int nq0 = m_base[0]->GetNumPoints();
146  int nq1 = m_base[1]->GetNumPoints();
147  Array<OneD, NekDouble> wsp1(nq1);
148 
149  // interpolate first coordinate direction
150  for (i = 0; i < nq1; ++i)
151  {
152  wsp1[i] =
153  Blas::Ddot(nq0, &(I[0]->GetPtr())[0], 1, &physvals[i * nq0], 1);
154  }
155 
156  // interpolate in second coordinate direction
157  val = Blas::Ddot(nq1, I[1]->GetPtr(), 1, wsp1, 1);
158 
159  return val;
160 }
static double Ddot(const int &n, const double *x, const int &incx, const double *y, const int &incy)
BLAS level 1: output = .
Definition: Blas.hpp:182

References Blas::Ddot(), and Nektar::StdRegions::StdExpansion::m_base.