Nektar++
Advection3DHomogeneous1D.cpp
Go to the documentation of this file.
1 ///////////////////////////////////////////////////////////////////////////////
2 //
3 // File: Advection3DHomogeneous1D.cpp
4 //
5 // For more information, please see: http://www.nektar.info
6 //
7 // The MIT License
8 //
9 // Copyright (c) 2006 Division of Applied Mathematics, Brown University (USA),
10 // Department of Aeronautics, Imperial College London (UK), and Scientific
11 // Computing and Imaging Institute, University of Utah (USA).
12 //
13 // Permission is hereby granted, free of charge, to any person obtaining a
14 // copy of this software and associated documentation files (the "Software"),
15 // to deal in the Software without restriction, including without limitation
16 // the rights to use, copy, modify, merge, publish, distribute, sublicense,
17 // and/or sell copies of the Software, and to permit persons to whom the
18 // Software is furnished to do so, subject to the following conditions:
19 //
20 // The above copyright notice and this permission notice shall be included
21 // in all copies or substantial portions of the Software.
22 //
23 // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
24 // OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
25 // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
26 // THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
27 // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
28 // FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
29 // DEALINGS IN THE SOFTWARE.
30 //
31 // Description: FR advection 3DHomogeneous1D class.
32 //
33 ///////////////////////////////////////////////////////////////////////////////
34 
35 #include <boost/core/ignore_unused.hpp>
36 
39 #include <iomanip>
40 #include <iostream>
41 
42 using namespace std;
43 
44 namespace Nektar
45 {
46 namespace SolverUtils
47 {
48 std::string Advection3DHomogeneous1D::type[] = {
50  "WeakDG3DHomogeneous1D", Advection3DHomogeneous1D::create),
52  "FRDG3DHomogeneous1D", Advection3DHomogeneous1D::create),
54  "FRDG3DHomogeneous1D", Advection3DHomogeneous1D::create),
56  "FRSD3DHomogeneous1D", Advection3DHomogeneous1D::create),
58  "FRHU3DHomogeneous1D", Advection3DHomogeneous1D::create),
60  "FRcmin3DHomogeneous1D", Advection3DHomogeneous1D::create),
62  "FRcinf3DHomogeneous1D", Advection3DHomogeneous1D::create)};
63 
64 /**
65  * @brief AdvectionFR uses the Flux Reconstruction (FR) approach to
66  * compute the advection term. The implementation is only for segments,
67  * quadrilaterals and hexahedra at the moment.
68  *
69  * \todo Extension to triangles, tetrahedra and other shapes.
70  * (Long term objective)
71  */
72 Advection3DHomogeneous1D::Advection3DHomogeneous1D(std::string advType)
73  : m_advType(advType)
74 {
75  // Strip trailing string "3DHomogeneous1D" to determine 2D advection
76  // type, and create an advection object for the plane.
77  string advName = advType.substr(0, advType.length() - 15);
78  m_planeAdv = GetAdvectionFactory().CreateInstance(advName, advName);
79 }
80 
81 /**
82  * @brief Initiliase Advection3DHomogeneous1D objects and store them
83  * before starting the time-stepping.
84  *
85  * @param pSession Pointer to session reader.
86  * @param pFields Pointer to fields.
87  */
91 {
92  int nConvectiveFields = pFields.size();
93 
95  nConvectiveFields);
96 
97  // Initialise the plane advection object.
98  for (int i = 0; i < nConvectiveFields; ++i)
99  {
100  pFields_plane0[i] = pFields[i]->GetPlane(0);
101  }
102  m_planeAdv->InitObject(pSession, pFields_plane0);
103 
104  m_numPoints = pFields[0]->GetTotPoints();
105  m_planes = pFields[0]->GetZIDs();
106  m_numPlanes = m_planes.size();
108 
109  // Set Riemann solver and flux vector callback for this plane.
110  m_planeAdv->SetRiemannSolver(m_riemann);
112  this);
113  m_planeCounter = 0;
114 
115  // Override Riemann solver scalar and vector callbacks.
116  map<string, RSScalarFuncType> scalars = m_riemann->GetScalars();
117  map<string, RSVecFuncType> vectors = m_riemann->GetVectors();
118 
119  for (auto &it1 : scalars)
120  {
121  std::shared_ptr<HomoRSScalar> tmp =
123  m_numPlanes);
124  m_riemann->SetScalar(it1.first, &HomoRSScalar::Exec, tmp);
125  }
126 
127  for (auto &it2 : vectors)
128  {
129  std::shared_ptr<HomoRSVector> tmp =
131  it2.second, m_numPlanes, it2.first);
132  m_riemann->SetVector(it2.first, &HomoRSVector::Exec, tmp);
133  }
134 
137 
138  // Set up storage for flux vector.
139  for (int i = 0; i < nConvectiveFields; ++i)
140  {
142  for (int j = 0; j < 3; ++j)
143  {
145  }
146  }
147 
150  m_numPlanes);
151  m_fieldsPlane =
157 
158  // Set up memory reference which links fluxVecPlane to fluxVecStore.
159  for (int i = 0; i < m_numPlanes; ++i)
160  {
161  m_planePos[i] = i * m_numPointsPlane;
162  m_fluxVecPlane[i] =
164 
165  for (int j = 0; j < nConvectiveFields; ++j)
166  {
168  for (int k = 0; k < 3; ++k)
169  {
172  }
173  }
174  }
175 }
176 
177 /**
178  * @brief Compute the advection operator for a given input @a inarray
179  * and put the result in @a outarray.
180  *
181  * @param nConvectiveFields Number of fields to advect.
182  * @param fields Pointer to fields.
183  * @param advVel Advection velocities.
184  * @param inarray Input which will be advected.
185  * @param outarray Computed advection.
186  */
188  const int nConvectiveFields,
190  const Array<OneD, Array<OneD, NekDouble>> &advVel,
191  const Array<OneD, Array<OneD, NekDouble>> &inarray,
192  Array<OneD, Array<OneD, NekDouble>> &outarray, const NekDouble &time,
193  const Array<OneD, Array<OneD, NekDouble>> &pFwd,
194  const Array<OneD, Array<OneD, NekDouble>> &pBwd)
195 {
196  boost::ignore_unused(pFwd, pBwd);
197 
199  int nVel = advVel.size();
200 
201  // Call solver's flux vector function to compute the flux vector on
202  // the entire domain.
203  m_fluxVector(inarray, m_fluxVecStore);
204 
205  // Loop over each plane.
206  for (int i = 0; i < m_numPlanes; ++i)
207  {
208  // Set up memory references for fields, inarray and outarray for
209  // this plane.
210  for (int j = 0; j < nConvectiveFields; ++j)
211  {
212  m_fieldsPlane[j] = fields[j]->GetPlane(i);
214  m_numPointsPlane, tmp2 = inarray[j] + m_planePos[i]);
216  m_numPointsPlane, tmp2 = outarray[j] + m_planePos[i]);
217  }
218 
219  for (int j = 0; j < nVel; ++j)
220  {
221  if (advVel[j].size() != 0)
222  {
224  m_numPointsPlane, tmp2 = advVel[j] + m_planePos[i]);
225  }
226  }
227 
228  // Compute advection term for this plane.
229  m_planeAdv->Advect(nConvectiveFields, m_fieldsPlane, m_advVelPlane,
231  }
232 
233  // Calculate Fourier derivative and add to final result.
234  for (int i = 0; i < nConvectiveFields; ++i)
235  {
236  fields[0]->PhysDeriv(2, m_fluxVecStore[i][2], tmp);
237 
238  Vmath::Vadd(m_numPoints, outarray[i], 1, tmp, 1, outarray[i], 1);
239  }
240 }
241 
243  const Array<OneD, Array<OneD, NekDouble>> &inarray,
245 {
246  boost::ignore_unused(inarray);
247 
248  // Return section of flux vector for this plane.
249  outarray = m_fluxVecPlane[m_planeCounter];
250 
251  // Increment the plane counter.
253 }
254 } // namespace SolverUtils
255 } // namespace Nektar
tKey RegisterCreatorFunction(tKey idKey, CreatorFunction classCreator, std::string pDesc="")
Register a class with the factory.
Definition: NekFactory.hpp:198
tBaseSharedPtr CreateInstance(tKey idKey, tParam... args)
Create an instance of the class referred to by idKey.
Definition: NekFactory.hpp:144
static std::shared_ptr< DataType > AllocateSharedPtr(const Args &...args)
Allocate a shared pointer from the memory pool.
Array< OneD, Array< OneD, Array< OneD, Array< OneD, NekDouble > > > > m_fluxVecPlane
Array< OneD, Array< OneD, NekDouble > > m_outarrayPlane
virtual void v_Advect(const int nConvField, const Array< OneD, MultiRegions::ExpListSharedPtr > &fields, const Array< OneD, Array< OneD, NekDouble >> &advVel, const Array< OneD, Array< OneD, NekDouble >> &inarray, Array< OneD, Array< OneD, NekDouble >> &outarray, const NekDouble &time, const Array< OneD, Array< OneD, NekDouble >> &pFwd=NullNekDoubleArrayOfArray, const Array< OneD, Array< OneD, NekDouble >> &pBwd=NullNekDoubleArrayOfArray) override
Compute the advection operator for a given input inarray and put the result in outarray.
Array< OneD, Array< OneD, NekDouble > > m_advVelPlane
Array< OneD, Array< OneD, NekDouble > > m_inarrayPlane
Array< OneD, MultiRegions::ExpListSharedPtr > m_fieldsPlane
Array< OneD, Array< OneD, Array< OneD, NekDouble > > > m_fluxVecStore
virtual void v_InitObject(LibUtilities::SessionReaderSharedPtr pSession, Array< OneD, MultiRegions::ExpListSharedPtr > pFields) override
Initiliase Advection3DHomogeneous1D objects and store them before starting the time-stepping.
void ModifiedFluxVector(const Array< OneD, Array< OneD, NekDouble >> &physfield, Array< OneD, Array< OneD, Array< OneD, NekDouble >>> &flux)
AdvectionFluxVecCB m_fluxVector
Callback function to the flux vector (set when advection is in conservative form).
Definition: Advection.h:211
RiemannSolverSharedPtr m_riemann
Riemann solver for DG-type schemes.
Definition: Advection.h:213
const Array< OneD, const NekDouble > & Exec()
const Array< OneD, const Array< OneD, NekDouble > > & Exec()
std::shared_ptr< SessionReader > SessionReaderSharedPtr
AdvectionFactory & GetAdvectionFactory()
Gets the factory for initialising advection objects.
Definition: Advection.cpp:47
The above copyright notice and this permission notice shall be included.
Definition: CoupledSolver.h:2
double NekDouble
void Vadd(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Add vector z = x+y.
Definition: Vmath.cpp:359