Nektar++
AlternateSkewAdvection.cpp
Go to the documentation of this file.
1 ///////////////////////////////////////////////////////////////////////////////
2 //
3 // File: AlternateSkewAdvection.cpp
4 //
5 // For more information, please see: http://www.nektar.info
6 //
7 // The MIT License
8 //
9 // Copyright (c) 2006 Division of Applied Mathematics, Brown University (USA),
10 // Department of Aeronautics, Imperial College London (UK), and Scientific
11 // Computing and Imaging Institute, University of Utah (USA).
12 //
13 // Permission is hereby granted, free of charge, to any person obtaining a
14 // copy of this software and associated documentation files (the "Software"),
15 // to deal in the Software without restriction, including without limitation
16 // the rights to use, copy, modify, merge, publish, distribute, sublicense,
17 // and/or sell copies of the Software, and to permit persons to whom the
18 // Software is furnished to do so, subject to the following conditions:
19 //
20 // The above copyright notice and this permission notice shall be included
21 // in all copies or substantial portions of the Software.
22 //
23 // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
24 // OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
25 // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
26 // THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
27 // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
28 // FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
29 // DEALINGS IN THE SOFTWARE.
30 //
31 // Description: Evaluation of the Navier Stokes advective term
32 //
33 ///////////////////////////////////////////////////////////////////////////////
34 
36 
37 using namespace std;
38 
39 namespace Nektar
40 {
41 
42 string AlternateSkewAdvection::className =
44  "AlternateSkew", AlternateSkewAdvection::create,
45  "Alternating Skew Symmetric");
46 
47 /**
48  * Constructor. Creates ...
49  *
50  * \param
51  * \param
52  */
53 AlternateSkewAdvection::AlternateSkewAdvection() : Advection()
54 {
55 }
56 
58 {
59 }
60 
64 {
65  boost::ignore_unused(fields);
66 
67  pSession->MatchSolverInfo("ModeType", "SingleMode", m_SingleMode, false);
68  pSession->MatchSolverInfo("ModeType", "HalfMode", m_HalfMode, false);
69 }
70 
72  const int nConvectiveFields,
74  const Array<OneD, Array<OneD, NekDouble>> &advVel,
75  const Array<OneD, Array<OneD, NekDouble>> &inarray,
76  Array<OneD, Array<OneD, NekDouble>> &outarray, const NekDouble &time,
77  const Array<OneD, Array<OneD, NekDouble>> &pFwd,
78  const Array<OneD, Array<OneD, NekDouble>> &pBwd)
79 {
80  boost::ignore_unused(time, pFwd, pBwd);
81 
82  // use dimension of Velocity vector to dictate dimension of operation
83  int ndim = advVel.size();
84  int nPointsTot = fields[0]->GetNpoints();
85  Array<OneD, Array<OneD, NekDouble>> velocity(ndim);
86  for (int i = 0; i < ndim; ++i)
87  {
88  if (fields[i]->GetWaveSpace() && !m_SingleMode && !m_HalfMode)
89  {
90  velocity[i] = Array<OneD, NekDouble>(nPointsTot, 0.0);
91  fields[i]->HomogeneousBwdTrans(nPointsTot, advVel[i], velocity[i]);
92  }
93  else
94  {
95  velocity[i] = advVel[i];
96  }
97  }
98  for (int n = 0; n < nConvectiveFields; ++n)
99  {
100  // ToDo: here we should add a check that V has right dimension
101  Array<OneD, NekDouble> gradV0, gradV1, gradV2, tmp, Up;
102 
103  gradV0 = Array<OneD, NekDouble>(nPointsTot);
104  tmp = Array<OneD, NekDouble>(nPointsTot);
105 
106  // Evaluate V\cdot Grad(u)
107  switch (ndim)
108  {
109  case 1:
110  if (m_advectioncalls % 2 == 0)
111  {
112  fields[0]->PhysDeriv(inarray[n], gradV0);
113  Vmath::Vmul(nPointsTot, gradV0, 1, velocity[0], 1,
114  outarray[n], 1);
115  }
116  else
117  {
118  Vmath::Vmul(nPointsTot, inarray[n], 1, velocity[0], 1,
119  gradV0, 1);
120  fields[0]->PhysDeriv(gradV0, outarray[n]);
121  }
122  Vmath::Smul(nPointsTot, 0.5, outarray[n], 1, outarray[n],
123  1); // must be mult by 0.5????
124  break;
125  case 2:
126  gradV1 = Array<OneD, NekDouble>(nPointsTot);
127  if (m_advectioncalls % 2 == 0)
128  {
129  fields[0]->PhysDeriv(inarray[n], gradV0, gradV1);
130  Vmath::Vmul(nPointsTot, gradV0, 1, velocity[0], 1,
131  outarray[n], 1);
132  Vmath::Vvtvp(nPointsTot, gradV1, 1, velocity[1], 1,
133  outarray[n], 1, outarray[n], 1);
134  }
135  else
136  {
137  Vmath::Vmul(nPointsTot, inarray[n], 1, velocity[0], 1,
138  gradV0, 1);
139  Vmath::Vmul(nPointsTot, inarray[n], 1, velocity[1], 1,
140  gradV1, 1);
141  fields[0]->PhysDeriv(MultiRegions::DirCartesianMap[0],
142  gradV0, outarray[n]);
143  fields[0]->PhysDeriv(MultiRegions::DirCartesianMap[1],
144  gradV1, tmp);
145  Vmath::Vadd(nPointsTot, tmp, 1, outarray[n], 1, outarray[n],
146  1);
147  }
148  Vmath::Smul(nPointsTot, 1.0, outarray[n], 1, outarray[n],
149  1); // must be mult by 0.5????
150  break;
151  case 3:
152  gradV1 = Array<OneD, NekDouble>(nPointsTot);
153  gradV2 = Array<OneD, NekDouble>(nPointsTot);
154 
155  // outarray[n] = 1/2(u*du/dx + v*du/dy + w*du/dz + duu/dx +
156  // duv/dy + duw/dz)
157 
158  if (fields[0]->GetWaveSpace() == true)
159  {
160  if (m_advectioncalls % 2 == 0)
161  {
162  // vector reused to avoid even more memory requirements
163  // names may be misleading
164  fields[0]->PhysDeriv(inarray[n], gradV0, gradV1,
165  gradV2);
166  fields[0]->HomogeneousBwdTrans(nPointsTot, gradV0, tmp);
167  Vmath::Vmul(nPointsTot, tmp, 1, velocity[0], 1,
168  outarray[n], 1); // + u*du/dx
169  fields[0]->HomogeneousBwdTrans(nPointsTot, gradV1, tmp);
170  Vmath::Vvtvp(nPointsTot, tmp, 1, velocity[1], 1,
171  outarray[n], 1, outarray[n],
172  1); // + v*du/dy
173  fields[0]->HomogeneousBwdTrans(nPointsTot, gradV2, tmp);
174  Vmath::Vvtvp(nPointsTot, tmp, 1, velocity[2], 1,
175  outarray[n], 1, outarray[n],
176  1); // + w*du/dz
177  }
178  else
179  {
180  Up = Array<OneD, NekDouble>(nPointsTot);
181  fields[0]->HomogeneousBwdTrans(nPointsTot, inarray[n],
182  Up);
183  Vmath::Vmul(nPointsTot, Up, 1, velocity[0], 1, gradV0,
184  1);
185  Vmath::Vmul(nPointsTot, Up, 1, velocity[1], 1, gradV1,
186  1);
187  Vmath::Vmul(nPointsTot, Up, 1, velocity[2], 1, gradV2,
188  1);
189 
190  fields[0]->SetWaveSpace(false);
191  fields[0]->PhysDeriv(MultiRegions::DirCartesianMap[0],
192  gradV0, outarray[n]); // duu/dx
193  fields[0]->PhysDeriv(MultiRegions::DirCartesianMap[1],
194  gradV1, tmp); // duv/dy
195  Vmath::Vadd(nPointsTot, tmp, 1, outarray[n], 1,
196  outarray[n], 1);
197  fields[0]->PhysDeriv(MultiRegions::DirCartesianMap[2],
198  gradV2, tmp); // duw/dz
199  Vmath::Vadd(nPointsTot, tmp, 1, outarray[n], 1,
200  outarray[n], 1);
201  fields[0]->SetWaveSpace(true);
202  }
203 
204  Vmath::Smul(nPointsTot, 1.0, outarray[n], 1, tmp,
205  1); // must be mult by 0.5????
206  fields[0]->HomogeneousFwdTrans(nPointsTot, tmp,
207  outarray[n]);
208  }
209  else
210  {
211  if (m_advectioncalls % 2 == 0)
212  {
213  fields[0]->PhysDeriv(inarray[n], gradV0, gradV1,
214  gradV2);
215  Vmath::Vmul(nPointsTot, gradV0, 1, velocity[0], 1,
216  outarray[n], 1);
217  Vmath::Vvtvp(nPointsTot, gradV1, 1, velocity[1], 1,
218  outarray[n], 1, outarray[n], 1);
219  Vmath::Vvtvp(nPointsTot, gradV2, 1, velocity[2], 1,
220  outarray[n], 1, outarray[n], 1);
221  }
222  else
223  {
224  Vmath::Vmul(nPointsTot, inarray[n], 1, velocity[0], 1,
225  gradV0, 1);
226  Vmath::Vmul(nPointsTot, inarray[n], 1, velocity[1], 1,
227  gradV1, 1);
228  Vmath::Vmul(nPointsTot, inarray[n], 1, velocity[2], 1,
229  gradV2, 1);
230  fields[0]->PhysDeriv(MultiRegions::DirCartesianMap[0],
231  gradV0, outarray[n]);
232  fields[0]->PhysDeriv(MultiRegions::DirCartesianMap[1],
233  gradV1, tmp);
234  Vmath::Vadd(nPointsTot, tmp, 1, outarray[n], 1,
235  outarray[n], 1);
236  fields[0]->PhysDeriv(MultiRegions::DirCartesianMap[2],
237  gradV2, tmp);
238  Vmath::Vadd(nPointsTot, tmp, 1, outarray[n], 1,
239  outarray[n], 1);
240  }
241  Vmath::Smul(nPointsTot, 1.0, outarray[n], 1, outarray[n],
242  1); // must be mult by 0.5????
243  }
244  break;
245  default:
246  ASSERTL0(false, "dimension unknown");
247  }
248  }
249 }
250 
251 } // namespace Nektar
#define ASSERTL0(condition, msg)
Definition: ErrorUtil.hpp:215
virtual void v_Advect(const int nConvectiveFields, const Array< OneD, MultiRegions::ExpListSharedPtr > &fields, const Array< OneD, Array< OneD, NekDouble >> &advVel, const Array< OneD, Array< OneD, NekDouble >> &inarray, Array< OneD, Array< OneD, NekDouble >> &outarray, const NekDouble &time, const Array< OneD, Array< OneD, NekDouble >> &pFwd=NullNekDoubleArrayOfArray, const Array< OneD, Array< OneD, NekDouble >> &pBwd=NullNekDoubleArrayOfArray) override
Advects a vector field.
virtual void v_InitObject(LibUtilities::SessionReaderSharedPtr pSession, Array< OneD, MultiRegions::ExpListSharedPtr > pFields) override
Initialises the advection object.
tKey RegisterCreatorFunction(tKey idKey, CreatorFunction classCreator, std::string pDesc="")
Register a class with the factory.
Definition: NekFactory.hpp:198
An abstract base class encapsulating the concept of advection of a vector field.
Definition: Advection.h:70
std::shared_ptr< SessionReader > SessionReaderSharedPtr
MultiRegions::Direction const DirCartesianMap[]
Definition: ExpList.h:91
AdvectionFactory & GetAdvectionFactory()
Gets the factory for initialising advection objects.
Definition: Advection.cpp:47
The above copyright notice and this permission notice shall be included.
Definition: CoupledSolver.h:2
double NekDouble
void Vmul(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Multiply vector z = x*y.
Definition: Vmath.cpp:209
void Vvtvp(int n, const T *w, const int incw, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
vvtvp (vector times vector plus vector): z = w*x + y
Definition: Vmath.cpp:574
void Vadd(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Add vector z = x+y.
Definition: Vmath.cpp:359
void Smul(int n, const T alpha, const T *x, const int incx, T *y, const int incy)
Scalar multiply y = alpha*x.
Definition: Vmath.cpp:248