Nektar++
BasisType.h
Go to the documentation of this file.
1 ///////////////////////////////////////////////////////////////////////////////
2 //
3 // File: BasisType.h
4 //
5 // For more information, please see: http://www.nektar.info
6 //
7 // The MIT License
8 //
9 // Copyright (c) 2006 Division of Applied Mathematics, Brown University (USA),
10 // Department of Aeronautics, Imperial College London (UK), and Scientific
11 // Computing and Imaging Institute, University of Utah (USA).
12 //
13 // Permission is hereby granted, free of charge, to any person obtaining a
14 // copy of this software and associated documentation files (the "Software"),
15 // to deal in the Software without restriction, including without limitation
16 // the rights to use, copy, modify, merge, publish, distribute, sublicense,
17 // and/or sell copies of the Software, and to permit persons to whom the
18 // Software is furnished to do so, subject to the following conditions:
19 //
20 // The above copyright notice and this permission notice shall be included
21 // in all copies or substantial portions of the Software.
22 //
23 // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
24 // OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
25 // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
26 // THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
27 // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
28 // FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
29 // DEALINGS IN THE SOFTWARE.
30 //
31 //
32 ///////////////////////////////////////////////////////////////////////////////
33 
34 #ifndef NEKTAR_LIB_UTILITIES_BASIS_TYPE_H
35 #define NEKTAR_LIB_UTILITIES_BASIS_TYPE_H
36 
37 namespace Nektar
38 {
39 namespace LibUtilities
40 {
42 {
44  eOrtho_A, //!< Principle Orthogonal Functions
45  //!< \f$\widetilde{\psi}^a_p(z_i)\f$
46  eOrtho_B, //!< Principle Orthogonal Functions
47  //!< \f$\widetilde{\psi}^b_{pq}(z_i)\f$
48  eOrtho_C, //!< Principle Orthogonal Functions
49  //!< \f$\widetilde{\psi}^c_{pqr}(z_i)\f$
50  eModified_A, //!< Principle Modified Functions \f$ \phi^a_p(z_i) \f$
51  eModified_B, //!< Principle Modified Functions \f$ \phi^b_{pq}(z_i) \f$
52  eModified_C, //!< Principle Modified Functions \f$ \phi^c_{pqr}(z_i) \f$
53  eOrthoPyr_C, //!< Principle Orthogonal Functions
54  //!< \f$\widetilde{\psi}^c_{pqr}(z_i) for Pyramids\f$
55  eModifiedPyr_C, //!< Principle Modified Functions \f$ \phi^c_{pqr}(z_i) for
56  //!< Pyramids\f$
57  eFourier, //!< Fourier Expansion \f$ \exp(i p\pi z_i)\f$
58  eGLL_Lagrange, //!< Lagrange for SEM basis \f$ h_p(z_i) \f$
59  eGauss_Lagrange, //!< Lagrange Polynomials using the Gauss points \f$
60  //!< h_p(z_i) \f$
61  eLegendre, //!< Legendre Polynomials \f$ L_p(z_i) = P^{0,0}_p(z_i)\f$. Same
62  //!< as Ortho_A
63  eChebyshev, //!< Chebyshev Polynomials \f$ T_p(z_i) =
64  //!< P^{-1/2,-1/2}_p(z_i)\f$
65  eMonomial, //!< Monomial polynomials \f$ L_p(z_i) = z_i^{p}\f$
66  eFourierSingleMode, //!< Fourier ModifiedExpansion with just the first mode
67  //!< \f$ \exp(i \pi z_i)\f$
68  eFourierHalfModeRe, //!< Fourier Modified expansions with just the real part
69  //!< of the first mode \f$ Re[\exp(i \pi z_i)]\f$
70  eFourierHalfModeIm, //!< Fourier Modified expansions with just the imaginary
71  //!< part of the first mode \f$ Im[\exp(i \pi z_i)]\f$
72  SIZE_BasisType //!< Length of enum list
73 };
74 }
75 } // namespace Nektar
76 
77 #endif
@ eModified_B
Principle Modified Functions .
Definition: BasisType.h:51
@ eGauss_Lagrange
Lagrange Polynomials using the Gauss points.
Definition: BasisType.h:59
@ eOrtho_A
Principle Orthogonal Functions .
Definition: BasisType.h:44
@ eModified_C
Principle Modified Functions .
Definition: BasisType.h:52
@ eGLL_Lagrange
Lagrange for SEM basis .
Definition: BasisType.h:58
@ SIZE_BasisType
Length of enum list.
Definition: BasisType.h:72
@ eFourierSingleMode
Fourier ModifiedExpansion with just the first mode .
Definition: BasisType.h:66
@ eChebyshev
Chebyshev Polynomials.
Definition: BasisType.h:63
@ eOrtho_C
Principle Orthogonal Functions .
Definition: BasisType.h:48
@ eModifiedPyr_C
Principle Modified Functions.
Definition: BasisType.h:55
@ eOrtho_B
Principle Orthogonal Functions .
Definition: BasisType.h:46
@ eModified_A
Principle Modified Functions .
Definition: BasisType.h:50
@ eFourierHalfModeIm
Fourier Modified expansions with just the imaginary part of the first mode .
Definition: BasisType.h:70
@ eFourierHalfModeRe
Fourier Modified expansions with just the real part of the first mode .
Definition: BasisType.h:68
@ eOrthoPyr_C
Principle Orthogonal Functions .
Definition: BasisType.h:53
@ eFourier
Fourier Expansion .
Definition: BasisType.h:57
The above copyright notice and this permission notice shall be included.
Definition: CoupledSolver.h:2