Nektar++
Bidomain.cpp
Go to the documentation of this file.
1 ///////////////////////////////////////////////////////////////////////////////
2 //
3 // File: Bidomain.cpp
4 //
5 // For more information, please see: http://www.nektar.info
6 //
7 // The MIT License
8 //
9 // Copyright (c) 2006 Division of Applied Mathematics, Brown University (USA),
10 // Department of Aeronautics, Imperial College London (UK), and Scientific
11 // Computing and Imaging Institute, University of Utah (USA).
12 //
13 // Permission is hereby granted, free of charge, to any person obtaining a
14 // copy of this software and associated documentation files (the "Software"),
15 // to deal in the Software without restriction, including without limitation
16 // the rights to use, copy, modify, merge, publish, distribute, sublicense,
17 // and/or sell copies of the Software, and to permit persons to whom the
18 // Software is furnished to do so, subject to the following conditions:
19 //
20 // The above copyright notice and this permission notice shall be included
21 // in all copies or substantial portions of the Software.
22 //
23 // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
24 // OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
25 // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
26 // THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
27 // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
28 // FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
29 // DEALINGS IN THE SOFTWARE.
30 //
31 // Description: Bidomain cardiac electrophysiology homogenised model.
32 //
33 ///////////////////////////////////////////////////////////////////////////////
34 
35 #include <iostream>
36 
39 
40 using namespace std;
41 
42 namespace Nektar
43 {
44 /**
45  * @class Bidomain
46  *
47  * Base model of cardiac electrophysiology of the form
48  * \f{align*}{
49  * \frac{\partial u}{\partial t} = \nabla^2 u + J_{ion},
50  * \f}
51  * where the reaction term, \f$J_{ion}\f$ is defined by a specific cell
52  * model.
53  *
54  * This implementation, at present, treats the reaction terms explicitly
55  * and the diffusive element implicitly.
56  */
57 
58 /**
59  * Registers the class with the Factory.
60  */
61 string Bidomain::className = GetEquationSystemFactory().RegisterCreatorFunction(
62  "Bidomain", Bidomain::create,
63  "Bidomain model of cardiac electrophysiology with 3D diffusion.");
64 
65 /**
66  *
67  */
68 Bidomain::Bidomain(const LibUtilities::SessionReaderSharedPtr &pSession,
70  : UnsteadySystem(pSession, pGraph)
71 {
72 }
73 
74 void Bidomain::v_InitObject(bool DeclareField)
75 {
76  UnsteadySystem::v_InitObject(DeclareField);
77  m_session->LoadParameter("Chi", m_chi);
78  m_session->LoadParameter("Cm", m_capMembrane);
79 
80  std::string vCellModel;
81  m_session->LoadSolverInfo("CELLMODEL", vCellModel, "");
82 
83  ASSERTL0(vCellModel != "", "Cell Model not specified.");
84 
86  m_fields[0]);
87  m_intVariables.push_back(0);
88  m_intVariables.push_back(1);
89 
90  // Load variable coefficients
94  std::string varName[3] = {"AnisotropicConductivityX",
95  "AnisotropicConductivityY",
96  "AnisotropicConductivityZ"};
97 
98  if (m_session->DefinesFunction("IntracellularConductivity") &&
99  m_session->DefinesFunction("ExtracellularConductivity"))
100  {
101  for (int i = 0; i < m_spacedim; ++i)
102  {
103  int nq = m_fields[0]->GetNpoints();
104  Array<OneD, NekDouble> x0(nq);
105  Array<OneD, NekDouble> x1(nq);
106  Array<OneD, NekDouble> x2(nq);
107 
108  // get the coordinates
109  m_fields[0]->GetCoords(x0, x1, x2);
113  tmp1[i] = Array<OneD, NekDouble>(nq);
114  tmp2[i] = Array<OneD, NekDouble>(nq);
115  tmp3[i] = Array<OneD, NekDouble>(nq);
116 
118  m_session->GetFunction("IntracellularConductivity", varName[i]);
120  m_session->GetFunction("ExtracellularConductivity", varName[i]);
121  for (int j = 0; j < nq; j++)
122  {
123  tmp1[i][j] = ifunc1->Evaluate(x0[j], x1[j], x2[j], 0.0);
124  tmp2[i][j] = ifunc2->Evaluate(x0[j], x1[j], x2[j], 0.0);
125  }
126  Vmath::Vadd(nq, tmp1[i], 1, tmp2[i], 1, tmp3[i], 1);
127  m_vardiffi[varCoeffEnum[i]] = tmp1[i];
128  m_vardiffie[varCoeffEnum[i]] = tmp3[i];
129  }
130  }
131 
132  if (m_session->DefinesParameter("StimulusDuration"))
133  {
134  ASSERTL0(m_session->DefinesFunction("Stimulus", "u"),
135  "Stimulus function not defined.");
136  m_session->LoadParameter("StimulusDuration", m_stimDuration);
137  }
138  else
139  {
140  m_stimDuration = 0;
141  }
142 
143  // Search through the loaded filters and pass the cell model to any
144  // CheckpointCellModel filters loaded.
145  for (auto &x : m_filters)
146  {
147  if (x.first == "CheckpointCellModel")
148  {
149  std::shared_ptr<FilterCheckpointCellModel> c =
150  std::dynamic_pointer_cast<FilterCheckpointCellModel>(x.second);
151  c->SetCellModel(m_cell);
152  }
153  }
154 
155  if (!m_explicitDiffusion)
156  {
158  }
161 }
162 
163 /**
164  *
165  */
167 {
168 }
169 
170 /**
171  * @param inarray Input array.
172  * @param outarray Output array.
173  * @param time Current simulation time.
174  * @param lambda Timestep.
175  */
177  const Array<OneD, const Array<OneD, NekDouble>> &inarray,
178  Array<OneD, Array<OneD, NekDouble>> &outarray, const NekDouble time,
179  const NekDouble lambda)
180 {
181  boost::ignore_unused(time);
182 
183  int nvariables = inarray.size();
184  int nq = m_fields[0]->GetNpoints();
185 
186  Array<OneD, NekDouble> grad0(nq), grad1(nq), grad2(nq), grad(nq);
187  Array<OneD, NekDouble> ggrad0(nq), ggrad1(nq), ggrad2(nq), ggrad(nq),
188  temp(nq);
189 
190  // We solve ( \sigma\nabla^2 - HHlambda ) Y[i] = rhs [i]
191  // inarray = input: \hat{rhs} -> output: \hat{Y}
192  // outarray = output: nabla^2 \hat{Y}
193  // where \hat = modal coeffs
194  for (int i = 0; i < nvariables; ++i)
195  {
196  // Only apply diffusion to first variable.
197  if (i > 1)
198  {
199  Vmath::Vcopy(nq, &inarray[i][0], 1, &outarray[i][0], 1);
200  continue;
201  }
202  if (i == 0)
203  {
205  factors[StdRegions::eFactorLambda] =
206  (1.0 / lambda) * (m_capMembrane * m_chi);
207  if (m_spacedim == 1)
208  {
209  // Take first partial derivative
210  m_fields[i]->PhysDeriv(inarray[1], ggrad0);
211  // Take second partial derivative
212  m_fields[i]->PhysDeriv(0, ggrad0, ggrad0);
213  // Multiply by Intracellular-Conductivity
214  if (m_session->DefinesFunction("IntracellularConductivity") &&
215  m_session->DefinesFunction("ExtracellularConductivity"))
216  {
217  Vmath::Smul(nq, m_session->GetParameter("sigmaix"), ggrad0,
218  1, ggrad0, 1);
219  }
220  // Add partial derivatives together
221  Vmath::Vcopy(nq, ggrad0, 1, ggrad, 1);
222  Vmath::Smul(nq, -1.0, ggrad, 1, ggrad, 1);
223  // Multiply 1.0/timestep/lambda
224  Vmath::Smul(nq, -factors[StdRegions::eFactorLambda], inarray[i],
225  1, temp, 1);
226  Vmath::Vadd(nq, ggrad, 1, temp, 1, m_fields[i]->UpdatePhys(),
227  1);
228  // Solve a system of equations with Helmholtz solver and
229  // transform back into physical space.
230  m_fields[i]->HelmSolve(m_fields[i]->GetPhys(),
231  m_fields[i]->UpdateCoeffs(), factors);
232  m_fields[i]->BwdTrans(m_fields[i]->GetCoeffs(),
233  m_fields[i]->UpdatePhys());
234  m_fields[i]->SetPhysState(true);
235  // Copy the solution vector (required as m_fields must be set).
236  outarray[i] = m_fields[i]->GetPhys();
237  }
238 
239  if (m_spacedim == 2)
240  {
241  // Take first partial derivative
242  m_fields[i]->PhysDeriv(inarray[1], ggrad0, ggrad1);
243  // Take second partial derivative
244  m_fields[i]->PhysDeriv(0, ggrad0, ggrad0);
245  m_fields[i]->PhysDeriv(1, ggrad1, ggrad1);
246  // Multiply by Intracellular-Conductivity
247  if (m_session->DefinesFunction("IntracellularConductivity") &&
248  m_session->DefinesFunction("ExtracellularConductivity"))
249  {
250  Vmath::Smul(nq, m_session->GetParameter("sigmaix"), ggrad0,
251  1, ggrad0, 1);
252  Vmath::Smul(nq, m_session->GetParameter("sigmaiy"), ggrad1,
253  1, ggrad1, 1);
254  }
255  // Add partial derivatives together
256  Vmath::Vadd(nq, ggrad0, 1, ggrad1, 1, ggrad, 1);
257  Vmath::Smul(nq, -1.0, ggrad, 1, ggrad, 1);
258  // Multiply 1.0/timestep/lambda
259  Vmath::Smul(nq, -factors[StdRegions::eFactorLambda], inarray[i],
260  1, temp, 1);
261  Vmath::Vadd(nq, ggrad, 1, temp, 1, m_fields[i]->UpdatePhys(),
262  1);
263  // Solve a system of equations with Helmholtz solver and
264  // transform back into physical space.
265  m_fields[i]->HelmSolve(m_fields[i]->GetPhys(),
266  m_fields[i]->UpdateCoeffs(), factors,
267  m_vardiffi);
268  m_fields[i]->BwdTrans(m_fields[i]->GetCoeffs(),
269  m_fields[i]->UpdatePhys());
270  m_fields[i]->SetPhysState(true);
271  // Copy the solution vector (required as m_fields must be set).
272  outarray[i] = m_fields[i]->GetPhys();
273  }
274 
275  if (m_spacedim == 3)
276  {
277  // Take first partial derivative
278  m_fields[i]->PhysDeriv(inarray[1], ggrad0, ggrad1, ggrad2);
279  // Take second partial derivative
280  m_fields[i]->PhysDeriv(0, ggrad0, ggrad0);
281  m_fields[i]->PhysDeriv(1, ggrad1, ggrad1);
282  m_fields[i]->PhysDeriv(2, ggrad2, ggrad2);
283  // Multiply by Intracellular-Conductivity
284  if (m_session->DefinesFunction("IntracellularConductivity") &&
285  m_session->DefinesFunction("ExtracellularConductivity"))
286  {
287  Vmath::Smul(nq, m_session->GetParameter("sigmaix"), ggrad0,
288  1, ggrad0, 1);
289  Vmath::Smul(nq, m_session->GetParameter("sigmaiy"), ggrad1,
290  1, ggrad1, 1);
291  Vmath::Smul(nq, m_session->GetParameter("sigmaiz"), ggrad2,
292  1, ggrad2, 1);
293  }
294  // Add partial derivatives together
295  Vmath::Vadd(nq, ggrad0, 1, ggrad1, 1, ggrad, 1);
296  Vmath::Vadd(nq, ggrad2, 1, ggrad, 1, ggrad, 1);
297  Vmath::Smul(nq, -1.0, ggrad, 1, ggrad, 1);
298  // Multiply 1.0/timestep/lambda
299  Vmath::Smul(nq, -factors[StdRegions::eFactorLambda], inarray[i],
300  1, temp, 1);
301  Vmath::Vadd(nq, ggrad, 1, temp, 1, m_fields[i]->UpdatePhys(),
302  1);
303  // Solve a system of equations with Helmholtz solver and
304  // transform back into physical space.
305  m_fields[i]->HelmSolve(m_fields[i]->GetPhys(),
306  m_fields[i]->UpdateCoeffs(), factors,
307  m_vardiffi);
308  m_fields[i]->BwdTrans(m_fields[i]->GetCoeffs(),
309  m_fields[i]->UpdatePhys());
310  m_fields[i]->SetPhysState(true);
311  // Copy the solution vector (required as m_fields must be set).
312  outarray[i] = m_fields[i]->GetPhys();
313  }
314  }
315  if (i == 1)
316  {
318  factors[StdRegions::eFactorLambda] = 0.0;
319  if (m_spacedim == 1)
320  {
321  // Take first partial derivative
322  m_fields[i]->PhysDeriv(m_fields[0]->UpdatePhys(), grad0);
323  // Take second derivative
324  m_fields[i]->PhysDeriv(0, grad0, grad0);
325  // Multiply by Intracellular-Conductivity
326  if (m_session->DefinesFunction("IntracellularConductivity") &&
327  m_session->DefinesFunction("ExtracellularConductivity"))
328  {
329  Vmath::Smul(nq, m_session->GetParameter("sigmaix"), grad0,
330  1, grad0, 1);
331  }
332  // and sum terms
333  Vmath::Vcopy(nq, grad0, 1, grad, 1);
334  Vmath::Smul(nq,
335  (-1.0 * m_session->GetParameter("sigmaix")) /
336  (m_session->GetParameter("sigmaix") +
337  m_session->GetParameter("sigmaix")),
338  grad, 1, grad, 1);
339  // Now solve Poisson problem for \phi_e
340  m_fields[i]->SetPhys(grad);
341  m_fields[i]->HelmSolve(m_fields[i]->GetPhys(),
342  m_fields[i]->UpdateCoeffs(), factors);
343  m_fields[i]->BwdTrans(m_fields[i]->GetCoeffs(),
344  m_fields[i]->UpdatePhys());
345  m_fields[i]->SetPhysState(true);
346  // Copy the solution vector (required as m_fields must be set).
347  outarray[i] = m_fields[i]->GetPhys();
348  }
349 
350  if (m_spacedim == 2)
351  {
352  // Take first partial derivative
353  m_fields[i]->PhysDeriv(m_fields[0]->UpdatePhys(), grad0, grad1);
354  // Take second derivative
355  m_fields[i]->PhysDeriv(0, grad0, grad0);
356  m_fields[i]->PhysDeriv(1, grad1, grad1);
357  // Multiply by Intracellular-Conductivity
358  if (m_session->DefinesFunction("IntracellularConductivity") &&
359  m_session->DefinesFunction("ExtracellularConductivity"))
360  {
361  Vmath::Smul(nq, m_session->GetParameter("sigmaix"), grad0,
362  1, grad0, 1);
363  Vmath::Smul(nq, m_session->GetParameter("sigmaiy"), grad1,
364  1, grad1, 1);
365  }
366  // and sum terms
367  Vmath::Vadd(nq, grad0, 1, grad1, 1, grad, 1);
368  Vmath::Smul(nq, -1.0, grad, 1, grad, 1);
369  // Now solve Poisson problem for \phi_e
370  m_fields[i]->SetPhys(grad);
371  m_fields[i]->HelmSolve(m_fields[i]->GetPhys(),
372  m_fields[i]->UpdateCoeffs(), factors,
373  m_vardiffie);
374  m_fields[i]->BwdTrans(m_fields[i]->GetCoeffs(),
375  m_fields[i]->UpdatePhys());
376  m_fields[i]->SetPhysState(true);
377  // Copy the solution vector (required as m_fields must be set).
378  outarray[i] = m_fields[i]->GetPhys();
379  }
380 
381  if (m_spacedim == 3)
382  {
383  // Take first partial derivative
384  m_fields[i]->PhysDeriv(m_fields[0]->UpdatePhys(), grad0, grad1,
385  grad2);
386  // Take second derivative
387  m_fields[i]->PhysDeriv(0, grad0, grad0);
388  m_fields[i]->PhysDeriv(1, grad1, grad1);
389  m_fields[i]->PhysDeriv(2, grad2, grad2);
390  // Multiply by Intracellular-Conductivity
391  if (m_session->DefinesFunction("IntracellularConductivity") &&
392  m_session->DefinesFunction("ExtracellularConductivity"))
393  {
394  Vmath::Smul(nq, m_session->GetParameter("sigmaix"), grad0,
395  1, grad0, 1);
396  Vmath::Smul(nq, m_session->GetParameter("sigmaiy"), grad1,
397  1, grad1, 1);
398  Vmath::Smul(nq, m_session->GetParameter("sigmaiz"), grad2,
399  1, grad2, 1);
400  }
401  // and sum terms
402  Vmath::Vadd(nq, grad0, 1, grad1, 1, grad, 1);
403  Vmath::Vadd(nq, grad2, 1, grad, 1, grad, 1);
404  Vmath::Smul(nq, -1.0, grad, 1, grad, 1);
405  // Now solve Poisson problem for \phi_e
406  m_fields[i]->SetPhys(grad);
407  m_fields[i]->HelmSolve(m_fields[i]->GetPhys(),
408  m_fields[i]->UpdateCoeffs(), factors,
409  m_vardiffie);
410  m_fields[i]->BwdTrans(m_fields[i]->GetCoeffs(),
411  m_fields[i]->UpdatePhys());
412  m_fields[i]->SetPhysState(true);
413  // Copy the solution vector (required as m_fields must be set).
414  outarray[i] = m_fields[i]->GetPhys();
415  }
416  }
417  }
418 }
419 
421  const Array<OneD, const Array<OneD, NekDouble>> &inarray,
422  Array<OneD, Array<OneD, NekDouble>> &outarray, const NekDouble time)
423 {
424  int nq = m_fields[0]->GetNpoints();
425  m_cell->TimeIntegrate(inarray, outarray, time);
426  if (m_stimDuration > 0 && time < m_stimDuration)
427  {
428  Array<OneD, NekDouble> x0(nq);
429  Array<OneD, NekDouble> x1(nq);
430  Array<OneD, NekDouble> x2(nq);
431  Array<OneD, NekDouble> result(nq);
432 
433  // get the coordinates
434  m_fields[0]->GetCoords(x0, x1, x2);
435 
437  m_session->GetFunction("Stimulus", "u");
438  ifunc->Evaluate(x0, x1, x2, time, result);
439 
440  Vmath::Vadd(nq, outarray[0], 1, result, 1, outarray[0], 1);
441  }
442  Vmath::Smul(nq, 1.0 / m_capMembrane, outarray[0], 1, outarray[0], 1);
443 }
444 
446  bool dumpInitialConditions,
447  const int domain)
448 {
449  EquationSystem::v_SetInitialConditions(initialtime, dumpInitialConditions,
450  domain);
451  m_cell->Initialise();
452 }
453 
454 /**
455  *
456  */
458 {
460 
461  /// @TODO Update summary
462  ASSERTL0(false, "Update the generate summary");
463  //
464  // out << "\tChi : " << m_chi << endl;
465  // out << "\tCm : " << m_capMembrane << endl;
466  // if (m_session->DefinesFunction("IntracellularConductivity",
467  // "AnisotropicConductivityX") &&
468  // m_session->GetFunctionType("IntracellularConductivity",
469  // "AnisotropicConductivityX") ==
470  // LibUtilities::eFunctionTypeExpression)
471  // {
472  // out << "\tIntra-Diffusivity-x : "
473  // << m_session->GetFunction("IntracellularConductivity",
474  // "AnisotropicConductivityX")->GetExpression()
475  // << endl;
476  // }
477  // if (m_session->DefinesFunction("IntracellularConductivity",
478  // "AnisotropicConductivityY") &&
479  // m_session->GetFunctionType("IntracellularConductivity",
480  // "AnisotropicConductivityY") ==
481  // LibUtilities::eFunctionTypeExpression)
482  // {
483  // out << "\tIntra-Diffusivity-y : "
484  // << m_session->GetFunction("IntracellularConductivity",
485  // "AnisotropicConductivityY")->GetExpression()
486  // << endl;
487  // }
488  // if (m_session->DefinesFunction("IntracellularConductivity",
489  // "AnisotropicConductivityZ") &&
490  // m_session->GetFunctionType("IntracellularConductivity",
491  // "AnisotropicConductivityZ") ==
492  // LibUtilities::eFunctionTypeExpression)
493  // {
494  // out << "\tIntra-Diffusivity-z : "
495  // << m_session->GetFunction("IntracellularConductivity",
496  // "AnisotropicConductivityZ")->GetExpression()
497  // << endl;
498  // }
499  // if (m_session->DefinesFunction("ExtracellularConductivity",
500  // "AnisotropicConductivityX") &&
501  // m_session->GetFunctionType("ExtracellularConductivity",
502  // "AnisotropicConductivityX") ==
503  // LibUtilities::eFunctionTypeExpression)
504  // {
505  // out << "\tExtra-Diffusivity-x : "
506  // << m_session->GetFunction("ExtracellularConductivity",
507  // "AnisotropicConductivityX")->GetExpression()
508  // << endl;
509  // }
510  // if (m_session->DefinesFunction("ExtracellularConductivity",
511  // "AnisotropicConductivityY") &&
512  // m_session->GetFunctionType("ExtracellularConductivity",
513  // "AnisotropicConductivityY") ==
514  // LibUtilities::eFunctionTypeExpression)
515  // {
516  // out << "\tExtra-Diffusivity-y : "
517  // << m_session->GetFunction("ExtracellularConductivity",
518  // "AnisotropicConductivityY")->GetExpression()
519  // << endl;
520  // }
521  // if (m_session->DefinesFunction("ExtracellularConductivity",
522  // "AnisotropicConductivityZ") &&
523  // m_session->GetFunctionType("ExtracellularConductivity",
524  // "AnisotropicConductivityZ") ==
525  // LibUtilities::eFunctionTypeExpression)
526  // {
527  // out << "\tExtra-Diffusivity-z : "
528  // << m_session->GetFunction("ExtracellularConductivity",
529  // "AnisotropicConductivityZ")->GetExpression()
530  // << endl;
531  // }
532  m_cell->GenerateSummary(s);
533 }
534 
535 } // namespace Nektar
#define ASSERTL0(condition, msg)
Definition: ErrorUtil.hpp:215
NekDouble m_chi
Definition: Bidomain.h:99
void DoImplicitSolve(const Array< OneD, const Array< OneD, NekDouble >> &inarray, Array< OneD, Array< OneD, NekDouble >> &outarray, NekDouble time, NekDouble lambda)
Solve for the diffusion term.
Definition: Bidomain.cpp:176
virtual void v_SetInitialConditions(NekDouble initialtime, bool dumpInitialConditions, const int domain) override
Sets a custom initial condition.
Definition: Bidomain.cpp:445
Array< OneD, Array< OneD, NekDouble > > tmp3
Definition: Bidomain.h:107
Array< OneD, Array< OneD, NekDouble > > tmp2
Definition: Bidomain.h:106
StdRegions::VarCoeffMap m_vardiffi
Definition: Bidomain.h:102
virtual void v_InitObject(bool DeclareField=true) override
Init object for UnsteadySystem class.
Definition: Bidomain.cpp:74
Array< OneD, Array< OneD, NekDouble > > tmp1
Definition: Bidomain.h:105
virtual ~Bidomain()
Desctructor.
Definition: Bidomain.cpp:166
CellModelSharedPtr m_cell
Cell model.
Definition: Bidomain.h:97
virtual void v_GenerateSummary(SummaryList &s) override
Prints a summary of the model parameters.
Definition: Bidomain.cpp:457
NekDouble m_capMembrane
Definition: Bidomain.h:99
StdRegions::VarCoeffMap m_vardiffie
Definition: Bidomain.h:103
NekDouble m_stimDuration
Stimulus current.
Definition: Bidomain.h:110
void DoOdeRhs(const Array< OneD, const Array< OneD, NekDouble >> &inarray, Array< OneD, Array< OneD, NekDouble >> &outarray, const NekDouble time)
Computes the reaction terms and .
Definition: Bidomain.cpp:420
tKey RegisterCreatorFunction(tKey idKey, CreatorFunction classCreator, std::string pDesc="")
Register a class with the factory.
Definition: NekFactory.hpp:198
tBaseSharedPtr CreateInstance(tKey idKey, tParam... args)
Create an instance of the class referred to by idKey.
Definition: NekFactory.hpp:144
void DefineProjection(FuncPointerT func, ObjectPointerT obj)
void DefineOdeRhs(FuncPointerT func, ObjectPointerT obj)
void DefineImplicitSolve(FuncPointerT func, ObjectPointerT obj)
int m_spacedim
Spatial dimension (>= expansion dim).
virtual SOLVER_UTILS_EXPORT void v_SetInitialConditions(NekDouble initialtime=0.0, bool dumpInitialConditions=true, const int domain=0)
Array< OneD, MultiRegions::ExpListSharedPtr > m_fields
Array holding all dependent variables.
LibUtilities::SessionReaderSharedPtr m_session
The session reader.
Base class for unsteady solvers.
LibUtilities::TimeIntegrationSchemeOperators m_ode
The time integration scheme operators to use.
std::vector< std::pair< std::string, FilterSharedPtr > > m_filters
bool m_explicitDiffusion
Indicates if explicit or implicit treatment of diffusion is used.
virtual SOLVER_UTILS_EXPORT void v_GenerateSummary(SummaryList &s) override
Print a summary of time stepping parameters.
virtual SOLVER_UTILS_EXPORT void v_InitObject(bool DeclareField=true) override
Init object for UnsteadySystem class.
SOLVER_UTILS_EXPORT void DoDummyProjection(const Array< OneD, const Array< OneD, NekDouble >> &inarray, Array< OneD, Array< OneD, NekDouble >> &outarray, const NekDouble time)
Perform dummy projection.
std::shared_ptr< SessionReader > SessionReaderSharedPtr
std::shared_ptr< Equation > EquationSharedPtr
Definition: Equation.h:129
std::vector< std::pair< std::string, std::string > > SummaryList
Definition: Misc.h:48
EquationSystemFactory & GetEquationSystemFactory()
std::shared_ptr< MeshGraph > MeshGraphSharedPtr
Definition: MeshGraph.h:172
std::map< ConstFactorType, NekDouble > ConstFactorMap
Definition: StdRegions.hpp:399
The above copyright notice and this permission notice shall be included.
Definition: CoupledSolver.h:2
CellModelFactory & GetCellModelFactory()
Definition: CellModel.cpp:46
double NekDouble
void Vadd(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Add vector z = x+y.
Definition: Vmath.cpp:359
void Smul(int n, const T alpha, const T *x, const int incx, T *y, const int incy)
Scalar multiply y = alpha*x.
Definition: Vmath.cpp:248
void Vcopy(int n, const T *x, const int incx, T *y, const int incy)
Definition: Vmath.cpp:1255