Nektar++
ForcingAxiSymmetric.cpp
Go to the documentation of this file.
1 ///////////////////////////////////////////////////////////////////////////////
2 //
3 // File: ForcingAxiSymmetric.cpp
4 //
5 // For more information, please see: http://www.nektar.info
6 //
7 // The MIT License
8 //
9 // Copyright (c) 2006 Division of Applied Mathematics, Brown University (USA),
10 // Department of Aeronautics, Imperial College London (UK), and Scientific
11 // Computing and Imaging Institute, University of Utah (USA).
12 //
13 // Permission is hereby granted, free of charge, to any person obtaining a
14 // copy of this software and associated documentation files (the "Software"),
15 // to deal in the Software without restriction, including without limitation
16 // the rights to use, copy, modify, merge, publish, distribute, sublicense,
17 // and/or sell copies of the Software, and to permit persons to whom the
18 // Software is furnished to do so, subject to the following conditions:
19 //
20 // The above copyright notice and this permission notice shall be included
21 // in all copies or substantial portions of the Software.
22 //
23 // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
24 // OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
25 // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
26 // THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
27 // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
28 // FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
29 // DEALINGS IN THE SOFTWARE.
30 //
31 // Description: Forcing for axi-symmetric flow.
32 //
33 ///////////////////////////////////////////////////////////////////////////////
34 
35 #include <boost/core/ignore_unused.hpp>
36 
38 
39 using namespace std;
40 
41 namespace Nektar
42 {
43 std::string ForcingAxiSymmetric::className =
45  "AxiSymmetric", ForcingAxiSymmetric::create,
46  "Forcing for axi-symmetric flow (around x=0)");
47 
48 ForcingAxiSymmetric::ForcingAxiSymmetric(
50  const std::weak_ptr<SolverUtils::EquationSystem> &pEquation)
51  : Forcing(pSession, pEquation)
52 {
53 }
54 
57  const unsigned int &pNumForcingFields, const TiXmlElement *pForce)
58 {
59  boost::ignore_unused(pForce);
60 
61  int spacedim = pFields[0]->GetGraph()->GetSpaceDimension();
62  int nPoints = pFields[0]->GetTotPoints();
63 
64  m_NumVariable = pNumForcingFields;
66  spacedim);
67 
68  // Get coordinates
70  for (int i = 0; i < 3; i++)
71  {
72  coords[i] = Array<OneD, NekDouble>(nPoints);
73  }
74  pFields[0]->GetCoords(coords[0], coords[1], coords[2]);
75 
76  // Calculate fac = -1/r if r!=0, fac = 0 if r == 0
78  for (int i = 0; i < nPoints; ++i)
79  {
80  if (coords[0][i] < NekConstants::kNekZeroTol)
81  {
82  m_geomFactor[i] = 0;
83  }
84  else
85  {
86  m_geomFactor[i] = -1.0 / coords[0][i];
87  }
88  }
89 
90  // Project m_geomFactor to solution space
91  // Array<OneD, NekDouble> tmpCoeff(pFields[0]->GetNcoeffs(), 0.0);
92  // pFields[0]->FwdTransLocalElmt(m_geomFactor, tmpCoeff);
93  // pFields[0]->BwdTrans(tmpCoeff, m_geomFactor);
94 
96  for (int i = 0; i < m_NumVariable; ++i)
97  {
98  m_Forcing[i] = Array<OneD, NekDouble>(pFields[0]->GetTotPoints(), 0.0);
99  }
100 }
101 
104  const Array<OneD, Array<OneD, NekDouble>> &inarray,
105  Array<OneD, Array<OneD, NekDouble>> &outarray, const NekDouble &time)
106 {
107  boost::ignore_unused(time);
108 
109  int nPoints = pFields[0]->GetTotPoints();
110 
111  // Get (E+p)
112  Array<OneD, NekDouble> tmp(nPoints, 0.0);
113  m_varConv->GetPressure(inarray, tmp);
114  Vmath::Vadd(nPoints, tmp, 1, inarray[m_NumVariable - 1], 1, tmp, 1);
115 
116  // F-rho = -1/r *rhou
117  Vmath::Vmul(nPoints, m_geomFactor, 1, inarray[1], 1, m_Forcing[0], 1);
118 
119  // F-rhou_r = -1/r *rhou_r * u_r and F-rhou_y = -1/r *rhou_y * u_r
120  for (int i = 1; i < 3; ++i)
121  {
122  Vmath::Vmul(nPoints, inarray[1], 1, inarray[i], 1, m_Forcing[i], 1);
123  Vmath::Vdiv(nPoints, m_Forcing[i], 1, inarray[0], 1, m_Forcing[i], 1);
124  Vmath::Vmul(nPoints, m_Forcing[i], 1, m_geomFactor, 1, m_Forcing[i], 1);
125  }
126 
127  // F-E = -1/r *(E+p)*u
128  Vmath::Vmul(nPoints, inarray[1], 1, tmp, 1, m_Forcing[m_NumVariable - 1],
129  1);
130  Vmath::Vdiv(nPoints, m_Forcing[m_NumVariable - 1], 1, inarray[0], 1,
131  m_Forcing[m_NumVariable - 1], 1);
132  Vmath::Vmul(nPoints, m_Forcing[m_NumVariable - 1], 1, m_geomFactor, 1,
133  m_Forcing[m_NumVariable - 1], 1);
134 
135  // Swirl
136  if (m_NumVariable == 5)
137  {
138  // F-rhou_r -= (-1/r) * rho * u_theta * u_theta
139  Vmath::Vmul(nPoints, inarray[3], 1, inarray[3], 1, tmp, 1);
140  Vmath::Vdiv(nPoints, tmp, 1, inarray[0], 1, tmp, 1);
141  Vmath::Vmul(nPoints, tmp, 1, m_geomFactor, 1, tmp, 1);
142  Vmath::Vsub(nPoints, m_Forcing[1], 1, tmp, 1, m_Forcing[1], 1);
143 
144  // F-rhou_theta = 2 * (-1/r *rhou_theta * u_r)
145  Vmath::Vmul(nPoints, inarray[1], 1, inarray[3], 1, m_Forcing[3], 1);
146  Vmath::Vdiv(nPoints, m_Forcing[3], 1, inarray[0], 1, m_Forcing[3], 1);
147  Vmath::Vmul(nPoints, m_Forcing[3], 1, m_geomFactor, 1, m_Forcing[3], 1);
148  Vmath::Smul(nPoints, 2.0, m_Forcing[3], 1, m_Forcing[3], 1);
149  }
150 
151  // Apply forcing
152  for (int i = 0; i < m_NumVariable; i++)
153  {
154  Vmath::Vadd(nPoints, outarray[i], 1, m_Forcing[i], 1, outarray[i], 1);
155  }
156 }
157 
158 } // namespace Nektar
VariableConverterSharedPtr m_varConv
Array< OneD, NekDouble > m_geomFactor
virtual void v_InitObject(const Array< OneD, MultiRegions::ExpListSharedPtr > &pFields, const unsigned int &pNumForcingFields, const TiXmlElement *pForce) override
virtual void v_Apply(const Array< OneD, MultiRegions::ExpListSharedPtr > &fields, const Array< OneD, Array< OneD, NekDouble >> &inarray, Array< OneD, Array< OneD, NekDouble >> &outarray, const NekDouble &time) override
tKey RegisterCreatorFunction(tKey idKey, CreatorFunction classCreator, std::string pDesc="")
Register a class with the factory.
Definition: NekFactory.hpp:198
static std::shared_ptr< DataType > AllocateSharedPtr(const Args &...args)
Allocate a shared pointer from the memory pool.
Defines a forcing term to be explicitly applied.
Definition: Forcing.h:73
int m_NumVariable
Number of variables.
Definition: Forcing.h:122
Array< OneD, Array< OneD, NekDouble > > m_Forcing
Evaluated forcing function.
Definition: Forcing.h:120
LibUtilities::SessionReaderSharedPtr m_session
Session reader.
Definition: Forcing.h:116
std::shared_ptr< SessionReader > SessionReaderSharedPtr
static const NekDouble kNekZeroTol
ForcingFactory & GetForcingFactory()
Declaration of the forcing factory singleton.
Definition: Forcing.cpp:44
The above copyright notice and this permission notice shall be included.
Definition: CoupledSolver.h:2
double NekDouble
void Vmul(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Multiply vector z = x*y.
Definition: Vmath.cpp:209
void Vadd(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Add vector z = x+y.
Definition: Vmath.cpp:359
void Smul(int n, const T alpha, const T *x, const int incx, T *y, const int incy)
Scalar multiply y = alpha*x.
Definition: Vmath.cpp:248
void Vdiv(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Multiply vector z = x/y.
Definition: Vmath.cpp:284
void Vsub(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Subtract vector z = x-y.
Definition: Vmath.cpp:419