Nektar++
Geometry3D.cpp
Go to the documentation of this file.
1 ////////////////////////////////////////////////////////////////////////////////
2 //
3 // File: Geometry3D.cpp
4 //
5 // For more information, please see: http://www.nektar.info/
6 //
7 // The MIT License
8 //
9 // Copyright (c) 2006 Division of Applied Mathematics, Brown University (USA),
10 // Department of Aeronautics, Imperial College London (UK), and Scientific
11 // Computing and Imaging Institute, University of Utah (USA).
12 //
13 // Permission is hereby granted, free of charge, to any person obtaining a
14 // copy of this software and associated documentation files (the "Software"),
15 // to deal in the Software without restriction, including without limitation
16 // the rights to use, copy, modify, merge, publish, distribute, sublicense,
17 // and/or sell copies of the Software, and to permit persons to whom the
18 // Software is furnished to do so, subject to the following conditions:
19 //
20 // The above copyright notice and this permission notice shall be included
21 // in all copies or substantial portions of the Software.
22 //
23 // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
24 // OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
25 // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
26 // THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
27 // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
28 // FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
29 // DEALINGS IN THE SOFTWARE.
30 //
31 // Description: 3D geometry information.
32 //
33 ////////////////////////////////////////////////////////////////////////////////
34 
35 #include <iomanip>
36 
41 #include <SpatialDomains/SegGeom.h>
42 #include <iomanip>
43 
44 using namespace std;
45 
46 namespace Nektar
47 {
48 namespace SpatialDomains
49 {
50 
51 Geometry3D::Geometry3D()
52 {
53 }
54 
55 Geometry3D::Geometry3D(const int coordim) : Geometry(coordim)
56 {
57  ASSERTL0(m_coordim > 2,
58  "Coordinate dimension should be at least 3 for a 3D geometry.");
59 }
60 
62 {
63 }
64 
65 //---------------------------------------
66 // Helper functions
67 //---------------------------------------
68 
69 //---------------------------------------
70 // 3D Geometry Methods
71 //---------------------------------------
73  const Array<OneD, const NekDouble> &coords,
74  const Array<OneD, const NekDouble> &ptsx,
75  const Array<OneD, const NekDouble> &ptsy,
77  NekDouble &dist)
78 {
79  // maximum iterations for convergence
80  const int MaxIterations = NekConstants::kNewtonIterations;
81  // |x-xp|^2 < EPSILON error tolerance
82  const NekDouble Tol = 1.e-8;
83  // |r,s| > LcoordDIV stop the search
84  const NekDouble LcoordDiv = 15.0;
85 
87  m_geomFactors->GetJac(m_xmap->GetPointsKeys());
88 
89  NekDouble ScaledTol =
90  Vmath::Vsum(Jac.size(), Jac, 1) / ((NekDouble)Jac.size());
91  ScaledTol *= Tol;
92 
93  NekDouble xmap, ymap, zmap, F1, F2, F3;
94 
95  NekDouble derx_1, derx_2, derx_3, dery_1, dery_2, dery_3, derz_1, derz_2,
96  derz_3, jac;
97 
98  // save intiial guess for later reference if required.
99  NekDouble init0 = Lcoords[0], init1 = Lcoords[1], init2 = Lcoords[2];
100 
101  Array<OneD, NekDouble> DxD1(ptsx.size());
102  Array<OneD, NekDouble> DxD2(ptsx.size());
103  Array<OneD, NekDouble> DxD3(ptsx.size());
104  Array<OneD, NekDouble> DyD1(ptsx.size());
105  Array<OneD, NekDouble> DyD2(ptsx.size());
106  Array<OneD, NekDouble> DyD3(ptsx.size());
107  Array<OneD, NekDouble> DzD1(ptsx.size());
108  Array<OneD, NekDouble> DzD2(ptsx.size());
109  Array<OneD, NekDouble> DzD3(ptsx.size());
110 
111  // Ideally this will be stored in m_geomfactors
112  m_xmap->PhysDeriv(ptsx, DxD1, DxD2, DxD3);
113  m_xmap->PhysDeriv(ptsy, DyD1, DyD2, DyD3);
114  m_xmap->PhysDeriv(ptsz, DzD1, DzD2, DzD3);
115 
116  int cnt = 0;
118  Array<OneD, NekDouble> eta(3);
119 
120  F1 = F2 = F3 = 2000; // Starting value of Function
121  NekDouble resid = sqrt(F1 * F1 + F2 * F2 + F3 * F3);
122  while (cnt++ < MaxIterations)
123  {
124  // evaluate lagrange interpolant at Lcoords
125  m_xmap->LocCoordToLocCollapsed(Lcoords, eta);
126  I[0] = m_xmap->GetBasis(0)->GetI(eta);
127  I[1] = m_xmap->GetBasis(1)->GetI(eta + 1);
128  I[2] = m_xmap->GetBasis(2)->GetI(eta + 2);
129 
130  // calculate the global point `corresponding to Lcoords
131  xmap = m_xmap->PhysEvaluate(I, ptsx);
132  ymap = m_xmap->PhysEvaluate(I, ptsy);
133  zmap = m_xmap->PhysEvaluate(I, ptsz);
134 
135  F1 = coords[0] - xmap;
136  F2 = coords[1] - ymap;
137  F3 = coords[2] - zmap;
138 
139  if (F1 * F1 + F2 * F2 + F3 * F3 < ScaledTol)
140  {
141  resid = sqrt(F1 * F1 + F2 * F2 + F3 * F3);
142  break;
143  }
144 
145  // Interpolate derivative metric at Lcoords
146  derx_1 = m_xmap->PhysEvaluate(I, DxD1);
147  derx_2 = m_xmap->PhysEvaluate(I, DxD2);
148  derx_3 = m_xmap->PhysEvaluate(I, DxD3);
149  dery_1 = m_xmap->PhysEvaluate(I, DyD1);
150  dery_2 = m_xmap->PhysEvaluate(I, DyD2);
151  dery_3 = m_xmap->PhysEvaluate(I, DyD3);
152  derz_1 = m_xmap->PhysEvaluate(I, DzD1);
153  derz_2 = m_xmap->PhysEvaluate(I, DzD2);
154  derz_3 = m_xmap->PhysEvaluate(I, DzD3);
155 
156  jac = derx_1 * (dery_2 * derz_3 - dery_3 * derz_2) -
157  derx_2 * (dery_1 * derz_3 - dery_3 * derz_1) +
158  derx_3 * (dery_1 * derz_2 - dery_2 * derz_1);
159 
160  // use analytical inverse of derivitives which are also similar to
161  // those of metric factors.
162  Lcoords[0] =
163  Lcoords[0] +
164  ((dery_2 * derz_3 - dery_3 * derz_2) * (coords[0] - xmap) -
165  (derx_2 * derz_3 - derx_3 * derz_2) * (coords[1] - ymap) +
166  (derx_2 * dery_3 - derx_3 * dery_2) * (coords[2] - zmap)) /
167  jac;
168 
169  Lcoords[1] =
170  Lcoords[1] -
171  ((dery_1 * derz_3 - dery_3 * derz_1) * (coords[0] - xmap) -
172  (derx_1 * derz_3 - derx_3 * derz_1) * (coords[1] - ymap) +
173  (derx_1 * dery_3 - derx_3 * dery_1) * (coords[2] - zmap)) /
174  jac;
175 
176  Lcoords[2] =
177  Lcoords[2] +
178  ((dery_1 * derz_2 - dery_2 * derz_1) * (coords[0] - xmap) -
179  (derx_1 * derz_2 - derx_2 * derz_1) * (coords[1] - ymap) +
180  (derx_1 * dery_2 - derx_2 * dery_1) * (coords[2] - zmap)) /
181  jac;
182 
183  if (!(std::isfinite(Lcoords[0]) && std::isfinite(Lcoords[1]) &&
184  std::isfinite(Lcoords[2])))
185  {
186  dist = 1e16;
187  std::ostringstream ss;
188  ss << "nan or inf found in NewtonIterationForLocCoord in element "
189  << GetGlobalID();
190  WARNINGL1(false, ss.str());
191  return;
192  }
193  if (fabs(Lcoords[0]) > LcoordDiv || fabs(Lcoords[1]) > LcoordDiv ||
194  fabs(Lcoords[0]) > LcoordDiv)
195  {
196  break; // lcoords have diverged so stop iteration
197  }
198  }
199 
200  m_xmap->LocCoordToLocCollapsed(Lcoords, eta);
201  if (ClampLocCoords(eta, 0.))
202  {
203  I[0] = m_xmap->GetBasis(0)->GetI(eta);
204  I[1] = m_xmap->GetBasis(1)->GetI(eta + 1);
205  I[2] = m_xmap->GetBasis(2)->GetI(eta + 2);
206  // calculate the global point corresponding to Lcoords
207  xmap = m_xmap->PhysEvaluate(I, ptsx);
208  ymap = m_xmap->PhysEvaluate(I, ptsy);
209  zmap = m_xmap->PhysEvaluate(I, ptsz);
210  F1 = coords[0] - xmap;
211  F2 = coords[1] - ymap;
212  F3 = coords[2] - zmap;
213  dist = sqrt(F1 * F1 + F2 * F2 + F3 * F3);
214  }
215  else
216  {
217  dist = 0.;
218  }
219 
220  if (cnt >= MaxIterations)
221  {
222  Array<OneD, NekDouble> collCoords(3);
223  m_xmap->LocCoordToLocCollapsed(Lcoords, collCoords);
224 
225  // if coordinate is inside element dump error!
226  if ((collCoords[0] >= -1.0 && collCoords[0] <= 1.0) &&
227  (collCoords[1] >= -1.0 && collCoords[1] <= 1.0) &&
228  (collCoords[2] >= -1.0 && collCoords[2] <= 1.0))
229  {
230  std::ostringstream ss;
231 
232  ss << "Reached MaxIterations (" << MaxIterations
233  << ") in Newton iteration ";
234  ss << "Init value (" << setprecision(4) << init0 << "," << init1
235  << "," << init2 << ") ";
236  ss << "Fin value (" << Lcoords[0] << "," << Lcoords[1] << ","
237  << Lcoords[2] << ") ";
238  ss << "Resid = " << resid << " Tolerance = " << sqrt(ScaledTol);
239 
240  WARNINGL1(cnt < MaxIterations, ss.str());
241  }
242  }
243 }
244 
246  Array<OneD, NekDouble> &Lcoords)
247 {
248  NekDouble dist = 0.;
249  if (GetMetricInfo()->GetGtype() == eRegular)
250  {
251  int v1, v2, v3;
255  {
256  v1 = 1;
257  v2 = 3;
258  v3 = 4;
259  }
261  {
262  v1 = 1;
263  v2 = 2;
264  v3 = 3;
265  }
266  else
267  {
268  v1 = 1;
269  v2 = 2;
270  v3 = 3;
271  ASSERTL0(false, "unrecognized 3D element type");
272  }
273  // Point inside tetrahedron
274  PointGeom r(m_coordim, 0, coords[0], coords[1], coords[2]);
275 
276  // Edges
277  PointGeom er0, e10, e20, e30;
278  er0.Sub(r, *m_verts[0]);
279  e10.Sub(*m_verts[v1], *m_verts[0]);
280  e20.Sub(*m_verts[v2], *m_verts[0]);
281  e30.Sub(*m_verts[v3], *m_verts[0]);
282 
283  // Cross products (Normal times area)
284  PointGeom cp1020, cp2030, cp3010;
285  cp1020.Mult(e10, e20);
286  cp2030.Mult(e20, e30);
287  cp3010.Mult(e30, e10);
288 
289  // Barycentric coordinates (relative volume)
290  NekDouble iV =
291  2. / e30.dot(cp1020); // Hex Volume = {(e30)dot(e10)x(e20)}
292  Lcoords[0] = er0.dot(cp2030) * iV - 1.0;
293  Lcoords[1] = er0.dot(cp3010) * iV - 1.0;
294  Lcoords[2] = er0.dot(cp1020) * iV - 1.0;
295 
296  // Set distance
297  Array<OneD, NekDouble> eta(3, 0.);
298  m_xmap->LocCoordToLocCollapsed(Lcoords, eta);
299  if (ClampLocCoords(eta, 0.))
300  {
301  Array<OneD, NekDouble> xi(3, 0.);
302  m_xmap->LocCollapsedToLocCoord(eta, xi);
303  xi[0] = (xi[0] + 1.) * 0.5; // re-scaled to ratio [0, 1]
304  xi[1] = (xi[1] + 1.) * 0.5;
305  xi[2] = (xi[2] + 1.) * 0.5;
306  for (int i = 0; i < m_coordim; ++i)
307  {
308  NekDouble tmp =
309  xi[0] * e10[i] + xi[1] * e20[i] + xi[2] * e30[i] - er0[i];
310  dist += tmp * tmp;
311  }
312  dist = sqrt(dist);
313  }
314  }
315  else
316  {
317  v_FillGeom();
318  // Determine nearest point of coords to values in m_xmap
319  int npts = m_xmap->GetTotPoints();
320  Array<OneD, NekDouble> ptsx(npts), ptsy(npts), ptsz(npts);
321  Array<OneD, NekDouble> tmp1(npts), tmp2(npts);
322 
323  m_xmap->BwdTrans(m_coeffs[0], ptsx);
324  m_xmap->BwdTrans(m_coeffs[1], ptsy);
325  m_xmap->BwdTrans(m_coeffs[2], ptsz);
326 
327  const Array<OneD, const NekDouble> za = m_xmap->GetPoints(0);
328  const Array<OneD, const NekDouble> zb = m_xmap->GetPoints(1);
329  const Array<OneD, const NekDouble> zc = m_xmap->GetPoints(2);
330 
331  // guess the first local coords based on nearest point
332  Vmath::Sadd(npts, -coords[0], ptsx, 1, tmp1, 1);
333  Vmath::Vmul(npts, tmp1, 1, tmp1, 1, tmp1, 1);
334  Vmath::Sadd(npts, -coords[1], ptsy, 1, tmp2, 1);
335  Vmath::Vvtvp(npts, tmp2, 1, tmp2, 1, tmp1, 1, tmp1, 1);
336  Vmath::Sadd(npts, -coords[2], ptsz, 1, tmp2, 1);
337  Vmath::Vvtvp(npts, tmp2, 1, tmp2, 1, tmp1, 1, tmp1, 1);
338 
339  int min_i = Vmath::Imin(npts, tmp1, 1);
340 
341  // Get Local coordinates
342  int qa = za.size(), qb = zb.size();
343 
344  Array<OneD, NekDouble> eta(3, 0.);
345  eta[2] = zc[min_i / (qa * qb)];
346  min_i = min_i % (qa * qb);
347  eta[1] = zb[min_i / qa];
348  eta[0] = za[min_i % qa];
349  m_xmap->LocCollapsedToLocCoord(eta, Lcoords);
350 
351  // Perform newton iteration to find local coordinates
352  NewtonIterationForLocCoord(coords, ptsx, ptsy, ptsz, Lcoords, dist);
353  }
354  return dist;
355 }
356 
357 /**
358  * @brief Put all quadrature information into face/edge structure and
359  * backward transform.
360  *
361  * Note verts, edges, and faces are listed according to anticlockwise
362  * convention but points in _coeffs have to be in array format from left
363  * to right.
364  */
366 {
367  if (m_state == ePtsFilled)
368  {
369  return;
370  }
371 
372  int i, j, k;
373 
374  for (i = 0; i < m_forient.size(); i++)
375  {
376  m_faces[i]->FillGeom();
377 
378  int nFaceCoeffs = m_faces[i]->GetXmap()->GetNcoeffs();
379 
380  Array<OneD, unsigned int> mapArray(nFaceCoeffs);
381  Array<OneD, int> signArray(nFaceCoeffs);
382 
383  if (m_forient[i] < 9)
384  {
385  m_xmap->GetTraceToElementMap(
386  i, mapArray, signArray, m_forient[i],
387  m_faces[i]->GetXmap()->GetTraceNcoeffs(0),
388  m_faces[i]->GetXmap()->GetTraceNcoeffs(1));
389  }
390  else
391  {
392  m_xmap->GetTraceToElementMap(
393  i, mapArray, signArray, m_forient[i],
394  m_faces[i]->GetXmap()->GetTraceNcoeffs(1),
395  m_faces[i]->GetXmap()->GetTraceNcoeffs(0));
396  }
397 
398  for (j = 0; j < m_coordim; j++)
399  {
400  const Array<OneD, const NekDouble> &coeffs =
401  m_faces[i]->GetCoeffs(j);
402 
403  for (k = 0; k < nFaceCoeffs; k++)
404  {
405  NekDouble v = signArray[k] * coeffs[k];
406  m_coeffs[j][mapArray[k]] = v;
407  }
408  }
409  }
410 
412 }
413 
414 /**
415  * @brief Given local collapsed coordinate Lcoord return the value of
416  * physical coordinate in direction i.
417  */
419  const Array<OneD, const NekDouble> &Lcoord)
420 {
421  ASSERTL1(m_state == ePtsFilled, "Geometry is not in physical space");
422 
423  Array<OneD, NekDouble> tmp(m_xmap->GetTotPoints());
424  m_xmap->BwdTrans(m_coeffs[i], tmp);
425 
426  return m_xmap->PhysEvaluate(Lcoord, tmp);
427 }
428 
429 //---------------------------------------
430 // Helper functions
431 //---------------------------------------
432 
434 {
435  return 3;
436 }
437 
439 {
440  return m_verts.size();
441 }
442 
444 {
445  return m_edges.size();
446 }
447 
449 {
450  return m_faces.size();
451 }
452 
454 {
455  return m_verts[i];
456 }
457 
459 {
460  ASSERTL2(i >= 0 && i <= m_edges.size() - 1,
461  "Edge ID must be between 0 and " +
462  boost::lexical_cast<string>(m_edges.size() - 1));
463  return m_edges[i];
464 }
465 
467 {
468  ASSERTL2((i >= 0) && (i <= 5), "Edge id must be between 0 and 4");
469  return m_faces[i];
470 }
471 
473 {
474  ASSERTL2(i >= 0 && i <= m_edges.size() - 1,
475  "Edge ID must be between 0 and " +
476  boost::lexical_cast<string>(m_edges.size() - 1));
477  return m_eorient[i];
478 }
479 
481 {
482  ASSERTL2(i >= 0 && i <= m_faces.size() - 1,
483  "Face ID must be between 0 and " +
484  boost::lexical_cast<string>(m_faces.size() - 1));
485  return m_forient[i];
486 }
487 
488 } // namespace SpatialDomains
489 } // namespace Nektar
#define WARNINGL1(condition, msg)
Definition: ErrorUtil.hpp:250
#define ASSERTL0(condition, msg)
Definition: ErrorUtil.hpp:215
#define ASSERTL1(condition, msg)
Assert Level 1 – Debugging which is used whether in FULLDEBUG or DEBUG compilation mode....
Definition: ErrorUtil.hpp:249
#define ASSERTL2(condition, msg)
Assert Level 2 – Debugging which is used FULLDEBUG compilation mode. This level assert is designed to...
Definition: ErrorUtil.hpp:272
virtual Geometry2DSharedPtr v_GetFace(int i) const override
Returns face i of this object.
Definition: Geometry3D.cpp:466
virtual int v_GetNumFaces() const override
Get the number of faces of this object.
Definition: Geometry3D.cpp:448
virtual NekDouble v_GetLocCoords(const Array< OneD, const NekDouble > &coords, Array< OneD, NekDouble > &Lcoords) override
Determine the local collapsed coordinates that correspond to a given Cartesian coordinate for this ge...
Definition: Geometry3D.cpp:245
virtual int v_GetNumEdges() const override
Get the number of edges of this object.
Definition: Geometry3D.cpp:443
std::vector< StdRegions::Orientation > m_forient
Definition: Geometry3D.h:84
virtual void v_FillGeom() override
Put all quadrature information into face/edge structure and backward transform.
Definition: Geometry3D.cpp:365
virtual NekDouble v_GetCoord(const int i, const Array< OneD, const NekDouble > &Lcoord) override
Given local collapsed coordinate Lcoord return the value of physical coordinate in direction i.
Definition: Geometry3D.cpp:418
virtual PointGeomSharedPtr v_GetVertex(int i) const override
Definition: Geometry3D.cpp:453
void NewtonIterationForLocCoord(const Array< OneD, const NekDouble > &coords, const Array< OneD, const NekDouble > &ptsx, const Array< OneD, const NekDouble > &ptsy, const Array< OneD, const NekDouble > &ptsz, Array< OneD, NekDouble > &Lcoords, NekDouble &dist)
Definition: Geometry3D.cpp:72
virtual Geometry1DSharedPtr v_GetEdge(int i) const override
Returns edge i of this object.
Definition: Geometry3D.cpp:458
virtual StdRegions::Orientation v_GetForient(const int i) const override
Returns the orientation of face i with respect to the ordering of faces in the standard element.
Definition: Geometry3D.cpp:480
virtual int v_GetShapeDim() const override
Get the object's shape dimension.
Definition: Geometry3D.cpp:433
virtual StdRegions::Orientation v_GetEorient(const int i) const override
Returns the orientation of edge i with respect to the ordering of edges in the standard element.
Definition: Geometry3D.cpp:472
std::vector< StdRegions::Orientation > m_eorient
Definition: Geometry3D.h:83
virtual int v_GetNumVerts() const override
Get the number of vertices of this object.
Definition: Geometry3D.cpp:438
Base class for shape geometry information.
Definition: Geometry.h:82
GeomState m_state
Enumeration to dictate whether coefficients are filled.
Definition: Geometry.h:192
bool ClampLocCoords(Array< OneD, NekDouble > &locCoord, NekDouble tol=std::numeric_limits< NekDouble >::epsilon())
Clamp local coords to be within standard regions [-1, 1]^dim.
Definition: Geometry.cpp:510
int GetGlobalID(void) const
Get the ID of this object.
Definition: Geometry.h:320
LibUtilities::ShapeType m_shapeType
Type of shape.
Definition: Geometry.h:198
Array< OneD, Array< OneD, NekDouble > > m_coeffs
Array containing expansion coefficients of m_xmap.
Definition: Geometry.h:202
GeomFactorsSharedPtr GetMetricInfo()
Get the geometric factors for this object.
Definition: Geometry.h:304
StdRegions::StdExpansionSharedPtr m_xmap
mapping containing isoparametric transformation.
Definition: Geometry.h:190
StdRegions::StdExpansionSharedPtr GetXmap() const
Return the mapping object Geometry::m_xmap that represents the coordinate transformation from standar...
Definition: Geometry.h:429
GeomFactorsSharedPtr m_geomFactors
Geometric factors.
Definition: Geometry.h:186
int m_coordim
Coordinate dimension of this geometry object.
Definition: Geometry.h:184
void Sub(PointGeom &a, PointGeom &b)
Definition: PointGeom.cpp:124
void Mult(PointGeom &a, PointGeom &b)
_this = a x b
Definition: PointGeom.cpp:133
NekDouble dot(PointGeom &a)
retun the dot product between this and input a
Definition: PointGeom.cpp:187
static const unsigned int kNewtonIterations
@ eRegular
Geometry is straight-sided with constant geometric factors.
std::shared_ptr< PointGeom > PointGeomSharedPtr
Definition: Geometry.h:59
std::shared_ptr< Geometry2D > Geometry2DSharedPtr
Definition: Geometry.h:65
@ ePtsFilled
Geometric information has been generated.
std::shared_ptr< Geometry1D > Geometry1DSharedPtr
Definition: Geometry.h:63
The above copyright notice and this permission notice shall be included.
Definition: CoupledSolver.h:2
double NekDouble
void Vmul(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Multiply vector z = x*y.
Definition: Vmath.cpp:209
void Vvtvp(int n, const T *w, const int incw, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
vvtvp (vector times vector plus vector): z = w*x + y
Definition: Vmath.cpp:574
T Vsum(int n, const T *x, const int incx)
Subtract return sum(x)
Definition: Vmath.cpp:895
int Imin(int n, const T *x, const int incx)
Return the index of the minimum element in x.
Definition: Vmath.cpp:1023
void Sadd(int n, const T alpha, const T *x, const int incx, T *y, const int incy)
Add scalar y = alpha + x.
Definition: Vmath.cpp:384
scalarT< T > sqrt(scalarT< T > in)
Definition: scalar.hpp:294