Nektar++
MappingXYofXY.cpp
Go to the documentation of this file.
1 ///////////////////////////////////////////////////////////////////////////////
2 //
3 // File: MappingXYofXY.cpp
4 //
5 // For more information, please see: http://www.nektar.info
6 //
7 // The MIT License
8 //
9 // Copyright (c) 2006 Division of Applied Mathematics, Brown University (USA),
10 // Department of Aeronautics, Imperial College London (UK), and Scientific
11 // Computing and Imaging Institute, University of Utah (USA).
12 //
13 // Permission is hereby granted, free of charge, to any person obtaining a
14 // copy of this software and associated documentation files (the "Software"),
15 // to deal in the Software without restriction, including without limitation
16 // the rights to use, copy, modify, merge, publish, distribute, sublicense,
17 // and/or sell copies of the Software, and to permit persons to whom the
18 // Software is furnished to do so, subject to the following conditions:
19 //
20 // The above copyright notice and this permission notice shall be included
21 // in all copies or substantial portions of the Software.
22 //
23 // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
24 // OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
25 // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
26 // THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
27 // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
28 // FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
29 // DEALINGS IN THE SOFTWARE.
30 //
31 // Description: Mapping of the type X = X(x,y), Y = Y(x,y)
32 //
33 ///////////////////////////////////////////////////////////////////////////////
34 
36 #include <MultiRegions/ExpList.h>
37 
38 namespace Nektar
39 {
40 namespace GlobalMapping
41 {
42 
43 std::string MappingXYofXY::className =
45  "X = X(x,y), Y = Y(x,y)");
46 
47 /**
48  * @class MappingXYofXY
49  * This class implements a mapping defined by the transformation
50  * \f[ \bar{x} = \bar{x}(x,y) \f]
51  * \f[ \bar{y} = \bar{y}(x,y) \f]
52  * \f[ \bar{z} = z \f]
53  * where \f$(\bar{x},\bar{y},\bar{z})\f$ are the Cartesian (physical)
54  * coordinates and \f$(x,y,z)\f$ are the transformed (computational)
55  * coordinates.
56  */
60  : Mapping(pSession, pFields)
61 {
62 }
63 
64 /**
65  *
66  */
69  const TiXmlElement *pMapping)
70 {
71  Mapping::v_InitObject(pFields, pMapping);
72 
73  m_constantJacobian = false;
74 
76  "Mapping X = X(x,y), Y = Y(x,y) needs 2 velocity components.");
77 }
78 
80  const Array<OneD, Array<OneD, NekDouble>> &inarray,
81  Array<OneD, Array<OneD, NekDouble>> &outarray)
82 {
83  int physTot = m_fields[0]->GetTotPoints();
84 
85  // U1 = fx*u1 + fy*u2
86  Vmath::Vmul(physTot, m_GeometricInfo[0], 1, inarray[0], 1, outarray[0], 1);
87  Vmath::Vvtvp(physTot, m_GeometricInfo[1], 1, inarray[1], 1, outarray[0], 1,
88  outarray[0], 1);
89 
90  // U2 = gx*u1+gy*u2
91  Vmath::Vmul(physTot, m_GeometricInfo[2], 1, inarray[0], 1, outarray[1], 1);
92  Vmath::Vvtvp(physTot, m_GeometricInfo[3], 1, inarray[1], 1, outarray[1], 1,
93  outarray[1], 1);
94 
95  // U3 = u3
96  if (m_nConvectiveFields == 3)
97  {
98  Vmath::Vcopy(physTot, inarray[2], 1, outarray[2], 1);
99  }
100 }
101 
103  const Array<OneD, Array<OneD, NekDouble>> &inarray,
104  Array<OneD, Array<OneD, NekDouble>> &outarray)
105 {
106  int physTot = m_fields[0]->GetTotPoints();
107  Array<OneD, NekDouble> wk(physTot, 0.0);
108 
109  // U1 = [gy*u1-gx*u2]/(fx*gy-gx*fy)
110  Vmath::Vmul(physTot, inarray[1], 1, m_GeometricInfo[2], 1, outarray[0], 1);
111  Vmath::Vvtvm(physTot, inarray[0], 1, m_GeometricInfo[3], 1, outarray[0], 1,
112  outarray[0], 1);
113  Vmath::Vdiv(physTot, outarray[0], 1, m_GeometricInfo[4], 1, outarray[0], 1);
114 
115  // U2 = [fx*u2 - fy*u1]/(fx*gy-gx*fy)
116  Vmath::Vmul(physTot, inarray[0], 1, m_GeometricInfo[1], 1, outarray[1], 1);
117  Vmath::Vvtvm(physTot, inarray[1], 1, m_GeometricInfo[0], 1, outarray[1], 1,
118  outarray[1], 1);
119  Vmath::Vdiv(physTot, outarray[1], 1, m_GeometricInfo[4], 1, outarray[1], 1);
120 
121  // U3 = u3
122  if (m_nConvectiveFields == 3)
123  {
124  Vmath::Vcopy(physTot, inarray[2], 1, outarray[2], 1);
125  }
126 }
127 
129  const Array<OneD, Array<OneD, NekDouble>> &inarray,
130  Array<OneD, Array<OneD, NekDouble>> &outarray)
131 {
132  int physTot = m_fields[0]->GetTotPoints();
133  Array<OneD, NekDouble> wk(physTot, 0.0);
134 
135  // U1 = [gy*u1-fy*u2]/(fx*gy-gx*fy)
136  Vmath::Vmul(physTot, inarray[1], 1, m_GeometricInfo[1], 1, outarray[0], 1);
137  Vmath::Vvtvm(physTot, inarray[0], 1, m_GeometricInfo[3], 1, outarray[0], 1,
138  outarray[0], 1);
139  Vmath::Vdiv(physTot, outarray[0], 1, m_GeometricInfo[4], 1, outarray[0], 1);
140 
141  // U2 = [fx*u2-gx*u1]/(fx*gy-gx*fy)
142  Vmath::Vmul(physTot, inarray[0], 1, m_GeometricInfo[2], 1, outarray[1], 1);
143  Vmath::Vvtvm(physTot, inarray[1], 1, m_GeometricInfo[0], 1, outarray[1], 1,
144  outarray[1], 1);
145  Vmath::Vdiv(physTot, outarray[1], 1, m_GeometricInfo[4], 1, outarray[1], 1);
146 
147  // U3 = u3
148  if (m_nConvectiveFields == 3)
149  {
150  Vmath::Vcopy(physTot, inarray[2], 1, outarray[2], 1);
151  }
152 }
153 
155  const Array<OneD, Array<OneD, NekDouble>> &inarray,
156  Array<OneD, Array<OneD, NekDouble>> &outarray)
157 {
158  int physTot = m_fields[0]->GetTotPoints();
159 
160  // U1 = u1*fx +gx*u2
161  Vmath::Vmul(physTot, m_GeometricInfo[0], 1, inarray[0], 1, outarray[0], 1);
162  Vmath::Vvtvp(physTot, m_GeometricInfo[2], 1, inarray[1], 1, outarray[0], 1,
163  outarray[0], 1);
164 
165  // U2 = fy*u1 + gy*u2
166  Vmath::Vmul(physTot, m_GeometricInfo[1], 1, inarray[0], 1, outarray[1], 1);
167  Vmath::Vvtvp(physTot, m_GeometricInfo[3], 1, inarray[1], 1, outarray[1], 1,
168  outarray[1], 1);
169 
170  // U3 = u3
171  if (m_nConvectiveFields == 3)
172  {
173  Vmath::Vcopy(physTot, inarray[2], 1, outarray[2], 1);
174  }
175 }
176 
178 {
179  int physTot = m_fields[0]->GetTotPoints();
180  Vmath::Vabs(physTot, m_GeometricInfo[4], 1, outarray, 1);
181 }
182 
184  Array<OneD, Array<OneD, NekDouble>> &outarray)
185 {
186  int physTot = m_fields[0]->GetTotPoints();
187  int nvel = m_nConvectiveFields;
188 
189  for (int i = 0; i < nvel * nvel; i++)
190  {
191  outarray[i] = Array<OneD, NekDouble>(physTot, 0.0);
192  }
193 
194  // g_{1,1} = m_metricTensor[0]
195  Vmath::Vcopy(physTot, m_metricTensor[0], 1, outarray[0 * nvel + 0], 1);
196 
197  // g_{2,2} = m_metricTensor[1]
198  Vmath::Vcopy(physTot, m_metricTensor[1], 1, outarray[1 * nvel + 1], 1);
199 
200  // g_{1,2}=g{2,1} = m_metricTensor[2]
201  Vmath::Vcopy(physTot, m_metricTensor[2], 1, outarray[0 * nvel + 1], 1);
202  Vmath::Vcopy(physTot, m_metricTensor[2], 1, outarray[1 * nvel + 0], 1);
203 
204  // g_{3,3} = 1
205  if (m_nConvectiveFields == 3)
206  {
207  Vmath::Sadd(physTot, 1.0, outarray[2 * nvel + 2], 1,
208  outarray[2 * nvel + 2], 1);
209  }
210 }
211 
213  Array<OneD, Array<OneD, NekDouble>> &outarray)
214 {
215  int physTot = m_fields[0]->GetTotPoints();
216  int nvel = m_nConvectiveFields;
217 
218  for (int i = 0; i < nvel * nvel; i++)
219  {
220  outarray[i] = Array<OneD, NekDouble>(physTot, 0.0);
221  }
222 
223  // Get Jacobian
224  Array<OneD, NekDouble> Jac(physTot, 0.0);
225  GetJacobian(Jac);
226 
227  // Get Jacobian squared
228  Array<OneD, NekDouble> wk(physTot, 0.0);
229  Vmath::Vmul(physTot, Jac, 1, Jac, 1, wk, 1);
230  // G^{1,1} = m_metricTensor[1]/Jac^2
231  Vmath::Vcopy(physTot, m_metricTensor[1], 1, outarray[0 * nvel + 0], 1);
232  Vmath::Vdiv(physTot, outarray[0 * nvel + 0], 1, wk, 1,
233  outarray[0 * nvel + 0], 1);
234 
235  // G^{2,2} = m_metricTensor[0]/Jac^2
236  Vmath::Vcopy(physTot, m_metricTensor[0], 1, outarray[1 * nvel + 1], 1);
237  Vmath::Vdiv(physTot, outarray[1 * nvel + 1], 1, wk, 1,
238  outarray[1 * nvel + 1], 1);
239 
240  // G^{1,2} = G^{2,1} = -m_metricTensor[2]/Jac^2
241  Vmath::Vcopy(physTot, m_metricTensor[2], 1, outarray[0 * nvel + 1], 1);
242  Vmath::Neg(physTot, outarray[0 * nvel + 1], 1);
243  Vmath::Vdiv(physTot, outarray[0 * nvel + 1], 1, wk, 1,
244  outarray[0 * nvel + 1], 1);
245  Vmath::Vcopy(physTot, outarray[0 * nvel + 1], 1, outarray[1 * nvel + 0], 1);
246 
247  // G^{3,3} = 1
248  if (m_nConvectiveFields == 3)
249  {
250  Vmath::Sadd(physTot, 1.0, outarray[2 * nvel + 2], 1,
251  outarray[2 * nvel + 2], 1);
252  }
253 }
254 
256  const Array<OneD, Array<OneD, NekDouble>> &inarray,
257  Array<OneD, Array<OneD, NekDouble>> &outarray)
258 {
259  int physTot = m_fields[0]->GetTotPoints();
260  int nvel = m_nConvectiveFields;
261 
262  for (int i = 0; i < nvel; i++)
263  {
264  for (int j = 0; j < nvel; j++)
265  {
266  outarray[i * nvel + j] = Array<OneD, NekDouble>(physTot, 0.0);
267  }
268  }
269 
270  // Calculate non-zero terms
271 
272  // outarray(0,0) = U1 * m_Christoffel[0] + U2 * m_Christoffel[1]
273  Vmath::Vmul(physTot, m_Christoffel[0], 1, inarray[0], 1,
274  outarray[0 * nvel + 0], 1);
275  Vmath::Vvtvp(physTot, m_Christoffel[1], 1, inarray[1], 1,
276  outarray[0 * nvel + 0], 1, outarray[0 * nvel + 0], 1);
277 
278  // outarray(0,1) = U1 * m_Christoffel[1] + U2 * m_Christoffel[2]
279  Vmath::Vmul(physTot, m_Christoffel[1], 1, inarray[0], 1,
280  outarray[0 * nvel + 1], 1);
281  Vmath::Vvtvp(physTot, m_Christoffel[2], 1, inarray[1], 1,
282  outarray[0 * nvel + 1], 1, outarray[0 * nvel + 1], 1);
283 
284  // outarray(1,0) = U1 * m_Christoffel[3] + U2 * m_Christoffel[4]
285  Vmath::Vmul(physTot, m_Christoffel[3], 1, inarray[0], 1,
286  outarray[1 * nvel + 0], 1);
287  Vmath::Vvtvp(physTot, m_Christoffel[4], 1, inarray[1], 1,
288  outarray[1 * nvel + 0], 1, outarray[1 * nvel + 0], 1);
289 
290  // outarray(1,1) = U1 * m_Christoffel[4] + U2 * m_Christoffel[5]
291  Vmath::Vmul(physTot, m_Christoffel[4], 1, inarray[0], 1,
292  outarray[1 * nvel + 1], 1);
293  Vmath::Vvtvp(physTot, m_Christoffel[5], 1, inarray[1], 1,
294  outarray[1 * nvel + 1], 1, outarray[1 * nvel + 1], 1);
295 }
296 
298  const Array<OneD, Array<OneD, NekDouble>> &inarray,
299  Array<OneD, Array<OneD, NekDouble>> &outarray)
300 {
301  int physTot = m_fields[0]->GetTotPoints();
302  int nvel = m_nConvectiveFields;
303 
304  for (int i = 0; i < nvel; i++)
305  {
306  for (int j = 0; j < nvel; j++)
307  {
308  outarray[i * nvel + j] = Array<OneD, NekDouble>(physTot, 0.0);
309  }
310  }
311 
312  // Calculate non-zero terms
313 
314  // outarray(0,0) = U1 * m_Christoffel[0] + U2 * m_Christoffel[3]
315  Vmath::Vmul(physTot, m_Christoffel[0], 1, inarray[0], 1,
316  outarray[0 * nvel + 0], 1);
317  Vmath::Vvtvp(physTot, m_Christoffel[3], 1, inarray[1], 1,
318  outarray[0 * nvel + 0], 1, outarray[0 * nvel + 0], 1);
319 
320  // outarray(0,1) = U1 * m_Christoffel[1] + U2 * m_Christoffel[4]
321  Vmath::Vmul(physTot, m_Christoffel[1], 1, inarray[0], 1,
322  outarray[0 * nvel + 1], 1);
323  Vmath::Vvtvp(physTot, m_Christoffel[4], 1, inarray[1], 1,
324  outarray[0 * nvel + 1], 1, outarray[0 * nvel + 1], 1);
325 
326  // outarray(1,0) = U1 * m_Christoffel[1] + U2 * m_Christoffel[4]
327  Vmath::Vmul(physTot, m_Christoffel[1], 1, inarray[0], 1,
328  outarray[1 * nvel + 0], 1);
329  Vmath::Vvtvp(physTot, m_Christoffel[4], 1, inarray[1], 1,
330  outarray[1 * nvel + 0], 1, outarray[1 * nvel + 0], 1);
331 
332  // outarray(1,1) = U1 * m_Christoffel[2] + U2 * m_Christoffel[5]
333  Vmath::Vmul(physTot, m_Christoffel[2], 1, inarray[0], 1,
334  outarray[1 * nvel + 1], 1);
335  Vmath::Vvtvp(physTot, m_Christoffel[5], 1, inarray[1], 1,
336  outarray[1 * nvel + 1], 1, outarray[1 * nvel + 1], 1);
337 }
338 
340 {
341  int phystot = m_fields[0]->GetTotPoints();
342  // Allocation of geometry memory
344  for (int i = 0; i < m_GeometricInfo.size(); i++)
345  {
346  m_GeometricInfo[i] = Array<OneD, NekDouble>(phystot, 0.0);
347  }
348 
349  bool waveSpace = m_fields[0]->GetWaveSpace();
350  m_fields[0]->SetWaveSpace(false);
351 
352  // Calculate derivatives of x transformation --> m_GeometricInfo 0-1
353  m_fields[0]->PhysDeriv(MultiRegions::DirCartesianMap[0], m_coords[0],
354  m_GeometricInfo[0]);
355  m_fields[0]->PhysDeriv(MultiRegions::DirCartesianMap[1], m_coords[0],
356  m_GeometricInfo[1]);
357 
358  // Calculate derivatives of y transformation m_GeometricInfo 2-3
359  m_fields[0]->PhysDeriv(MultiRegions::DirCartesianMap[0], m_coords[1],
360  m_GeometricInfo[2]);
361  m_fields[0]->PhysDeriv(MultiRegions::DirCartesianMap[1], m_coords[1],
362  m_GeometricInfo[3]);
363 
364  // Calculate fx*gy-gx*fy --> m_GeometricInfo4
365  Vmath::Vmul(phystot, m_GeometricInfo[1], 1, m_GeometricInfo[2], 1,
366  m_GeometricInfo[4], 1);
367  Vmath::Vvtvm(phystot, m_GeometricInfo[0], 1, m_GeometricInfo[3], 1,
368  m_GeometricInfo[4], 1, m_GeometricInfo[4], 1);
369  //
372 
373  m_fields[0]->SetWaveSpace(waveSpace);
374 }
375 
377 {
378  int physTot = m_fields[0]->GetTotPoints();
379  // Allocate memory
381  for (int i = 0; i < m_metricTensor.size(); i++)
382  {
383  m_metricTensor[i] = Array<OneD, NekDouble>(physTot, 0.0);
384  }
385  // g_{1,1} = fx^2+gx^2
386  Vmath::Vmul(physTot, m_GeometricInfo[0], 1, m_GeometricInfo[0], 1,
387  m_metricTensor[0], 1);
388  Vmath::Vvtvp(physTot, m_GeometricInfo[2], 1, m_GeometricInfo[2], 1,
389  m_metricTensor[0], 1, m_metricTensor[0], 1);
390  // g_{2,2} = fy^2+gy^2
391  Vmath::Vmul(physTot, m_GeometricInfo[1], 1, m_GeometricInfo[1], 1,
392  m_metricTensor[1], 1);
393  Vmath::Vvtvp(physTot, m_GeometricInfo[3], 1, m_GeometricInfo[3], 1,
394  m_metricTensor[1], 1, m_metricTensor[1], 1);
395  // g_{1,2} = g_{2,1} = fy*fx+gx*gy
396  Vmath::Vmul(physTot, m_GeometricInfo[0], 1, m_GeometricInfo[1], 1,
397  m_metricTensor[2], 1);
398  Vmath::Vvtvp(physTot, m_GeometricInfo[2], 1, m_GeometricInfo[3], 1,
399  m_metricTensor[2], 1, m_metricTensor[2], 1);
400 }
401 
403 {
404  int physTot = m_fields[0]->GetTotPoints();
405  int nvel = m_nConvectiveFields;
406 
407  Array<OneD, Array<OneD, NekDouble>> G(nvel * nvel);
408  Array<OneD, Array<OneD, NekDouble>> G_inv(nvel * nvel);
409  Array<OneD, Array<OneD, NekDouble>> gradG(2 * 2 * 2);
410  Array<OneD, Array<OneD, NekDouble>> tmp(2 * 2 * 2);
412  // Allocate memory
413  for (int i = 0; i < gradG.size(); i++)
414  {
415  gradG[i] = Array<OneD, NekDouble>(physTot, 0.0);
416  tmp[i] = Array<OneD, NekDouble>(physTot, 0.0);
417  }
418  for (int i = 0; i < G.size(); i++)
419  {
420  G[i] = Array<OneD, NekDouble>(physTot, 0.0);
421  G_inv[i] = Array<OneD, NekDouble>(physTot, 0.0);
422  }
423 
424  // Get the metric tensor and its inverse
425  GetMetricTensor(G);
426  GetInvMetricTensor(G_inv);
427 
428  bool waveSpace = m_fields[0]->GetWaveSpace();
429  m_fields[0]->SetWaveSpace(false);
430  // Calculate gradients of g
431  // consider only 2 dimensions, since the 3rd is trivial
432  for (int i = 0; i < 2; i++)
433  {
434  for (int j = 0; j < 2; j++)
435  {
436  for (int k = 0; k < 2; k++)
437  {
438  m_fields[0]->PhysDeriv(MultiRegions::DirCartesianMap[k],
439  G[i * nvel + j],
440  gradG[i * 2 * 2 + j * 2 + k]);
441  }
442  }
443  }
444 
445  // Calculate tmp[p,j,k] = 1/2( gradG[pj,k]+ gradG[pk,j]-gradG[jk,p])
446  for (int p = 0; p < 2; p++)
447  {
448  for (int j = 0; j < 2; j++)
449  {
450  for (int k = 0; k < 2; k++)
451  {
452  Vmath::Vadd(physTot, gradG[p * 2 * 2 + j * 2 + k], 1,
453  gradG[p * 2 * 2 + k * 2 + j], 1,
454  tmp[p * 2 * 2 + j * 2 + k], 1);
455  Vmath::Vsub(physTot, tmp[p * 2 * 2 + j * 2 + k], 1,
456  gradG[j * 2 * 2 + k * 2 + p], 1,
457  tmp[p * 2 * 2 + j * 2 + k], 1);
458  Vmath::Smul(physTot, 0.5, tmp[p * 2 * 2 + j * 2 + k], 1,
459  tmp[p * 2 * 2 + j * 2 + k], 1);
460  }
461  }
462  }
463 
464  // Calculate Christoffel symbols = g^ip tmp[p,j,k]
465  int n = 0;
466  for (int i = 0; i < 2; i++)
467  {
468  for (int j = 0; j < 2; j++)
469  {
470  for (int k = 0; k <= j; k++)
471  {
472  m_Christoffel[n] = Array<OneD, NekDouble>(physTot, 0.0);
473  for (int p = 0; p < 2; p++)
474  {
475  Vmath::Vvtvp(physTot, G_inv[i * nvel + p], 1,
476  tmp[p * 2 * 2 + j * 2 + k], 1,
477  m_Christoffel[n], 1, m_Christoffel[n], 1);
478  }
479  n = n + 1;
480  }
481  }
482  }
483 
484  m_fields[0]->SetWaveSpace(waveSpace);
485 }
486 
487 } // namespace GlobalMapping
488 } // namespace Nektar
#define ASSERTL0(condition, msg)
Definition: ErrorUtil.hpp:215
Base class for mapping to be applied to the coordinate system.
Definition: Mapping.h:69
int m_nConvectiveFields
Number of velocity components.
Definition: Mapping.h:414
Array< OneD, Array< OneD, NekDouble > > m_GeometricInfo
Array with metric terms of the mapping.
Definition: Mapping.h:412
Array< OneD, Array< OneD, NekDouble > > m_coords
Array with the Cartesian coordinates.
Definition: Mapping.h:408
Array< OneD, MultiRegions::ExpListSharedPtr > m_fields
Definition: Mapping.h:406
GLOBAL_MAPPING_EXPORT void GetMetricTensor(Array< OneD, Array< OneD, NekDouble >> &outarray)
Get the metric tensor .
Definition: Mapping.h:177
GLOBAL_MAPPING_EXPORT void GetInvMetricTensor(Array< OneD, Array< OneD, NekDouble >> &outarray)
Get the inverse of metric tensor .
Definition: Mapping.h:184
GLOBAL_MAPPING_EXPORT void GetJacobian(Array< OneD, NekDouble > &outarray)
Get the Jacobian of the transformation.
Definition: Mapping.h:155
virtual GLOBAL_MAPPING_EXPORT void v_InitObject(const Array< OneD, MultiRegions::ExpListSharedPtr > &pFields, const TiXmlElement *pMapping)
Definition: Mapping.cpp:101
bool m_constantJacobian
Flag defining if the Jacobian is constant.
Definition: Mapping.h:423
virtual GLOBAL_MAPPING_EXPORT void v_ContravarToCartesian(const Array< OneD, Array< OneD, NekDouble >> &inarray, Array< OneD, Array< OneD, NekDouble >> &outarray) override
virtual GLOBAL_MAPPING_EXPORT void v_ApplyChristoffelCovar(const Array< OneD, Array< OneD, NekDouble >> &inarray, Array< OneD, Array< OneD, NekDouble >> &outarray) override
static std::string className
Name of the class.
Definition: MappingXYofXY.h:70
virtual GLOBAL_MAPPING_EXPORT void v_ApplyChristoffelContravar(const Array< OneD, Array< OneD, NekDouble >> &inarray, Array< OneD, Array< OneD, NekDouble >> &outarray) override
static GLOBAL_MAPPING_EXPORT MappingSharedPtr create(const LibUtilities::SessionReaderSharedPtr &pSession, const Array< OneD, MultiRegions::ExpListSharedPtr > &pFields, const TiXmlElement *pMapping)
Creates an instance of this class.
Definition: MappingXYofXY.h:58
MappingXYofXY(const LibUtilities::SessionReaderSharedPtr &pSession, const Array< OneD, MultiRegions::ExpListSharedPtr > &pFields)
Array< OneD, Array< OneD, NekDouble > > m_metricTensor
Definition: MappingXYofXY.h:79
Array< OneD, Array< OneD, NekDouble > > m_Christoffel
Definition: MappingXYofXY.h:80
virtual GLOBAL_MAPPING_EXPORT void v_UpdateGeomInfo() override
virtual GLOBAL_MAPPING_EXPORT void v_GetJacobian(Array< OneD, NekDouble > &outarray) override
virtual GLOBAL_MAPPING_EXPORT void v_InitObject(const Array< OneD, MultiRegions::ExpListSharedPtr > &pFields, const TiXmlElement *pMapping) override
virtual GLOBAL_MAPPING_EXPORT void v_ContravarFromCartesian(const Array< OneD, Array< OneD, NekDouble >> &inarray, Array< OneD, Array< OneD, NekDouble >> &outarray) override
virtual GLOBAL_MAPPING_EXPORT void v_GetInvMetricTensor(Array< OneD, Array< OneD, NekDouble >> &outarray) override
virtual GLOBAL_MAPPING_EXPORT void v_CovarFromCartesian(const Array< OneD, Array< OneD, NekDouble >> &inarray, Array< OneD, Array< OneD, NekDouble >> &outarray) override
virtual GLOBAL_MAPPING_EXPORT void v_GetMetricTensor(Array< OneD, Array< OneD, NekDouble >> &outarray) override
virtual GLOBAL_MAPPING_EXPORT void v_CovarToCartesian(const Array< OneD, Array< OneD, NekDouble >> &inarray, Array< OneD, Array< OneD, NekDouble >> &outarray) override
tKey RegisterCreatorFunction(tKey idKey, CreatorFunction classCreator, std::string pDesc="")
Register a class with the factory.
Definition: NekFactory.hpp:198
MappingFactory & GetMappingFactory()
Declaration of the mapping factory singleton.
Definition: Mapping.cpp:53
std::shared_ptr< SessionReader > SessionReaderSharedPtr
MultiRegions::Direction const DirCartesianMap[]
Definition: ExpList.h:91
The above copyright notice and this permission notice shall be included.
Definition: CoupledSolver.h:2
void Vmul(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Multiply vector z = x*y.
Definition: Vmath.cpp:209
void Vabs(int n, const T *x, const int incx, T *y, const int incy)
vabs: y = |x|
Definition: Vmath.cpp:553
void Neg(int n, T *x, const int incx)
Negate x = -x.
Definition: Vmath.cpp:518
void Vvtvp(int n, const T *w, const int incw, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
vvtvp (vector times vector plus vector): z = w*x + y
Definition: Vmath.cpp:574
void Vadd(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Add vector z = x+y.
Definition: Vmath.cpp:359
void Vvtvm(int n, const T *w, const int incw, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
vvtvm (vector times vector minus vector): z = w*x - y
Definition: Vmath.cpp:598
void Smul(int n, const T alpha, const T *x, const int incx, T *y, const int incy)
Scalar multiply y = alpha*x.
Definition: Vmath.cpp:248
void Vdiv(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Multiply vector z = x/y.
Definition: Vmath.cpp:284
void Sadd(int n, const T alpha, const T *x, const int incx, T *y, const int incy)
Add scalar y = alpha + x.
Definition: Vmath.cpp:384
void Vcopy(int n, const T *x, const int incx, T *y, const int incy)
Definition: Vmath.cpp:1255
void Vsub(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Subtract vector z = x-y.
Definition: Vmath.cpp:419