Nektar++
MappingXYofZ.cpp
Go to the documentation of this file.
1 ///////////////////////////////////////////////////////////////////////////////
2 //
3 // File: MappingXYofZ.cpp
4 //
5 // For more information, please see: http://www.nektar.info
6 //
7 // The MIT License
8 //
9 // Copyright (c) 2006 Division of Applied Mathematics, Brown University (USA),
10 // Department of Aeronautics, Imperial College London (UK), and Scientific
11 // Computing and Imaging Institute, University of Utah (USA).
12 //
13 // Permission is hereby granted, free of charge, to any person obtaining a
14 // copy of this software and associated documentation files (the "Software"),
15 // to deal in the Software without restriction, including without limitation
16 // the rights to use, copy, modify, merge, publish, distribute, sublicense,
17 // and/or sell copies of the Software, and to permit persons to whom the
18 // Software is furnished to do so, subject to the following conditions:
19 //
20 // The above copyright notice and this permission notice shall be included
21 // in all copies or substantial portions of the Software.
22 //
23 // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
24 // OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
25 // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
26 // THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
27 // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
28 // FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
29 // DEALINGS IN THE SOFTWARE.
30 //
31 // Description: Mapping of the type X = x + f(z), Y = y + g(z)
32 //
33 ///////////////////////////////////////////////////////////////////////////////
34 
35 #include <boost/core/ignore_unused.hpp>
36 
38 #include <MultiRegions/ExpList.h>
39 
40 namespace Nektar
41 {
42 namespace GlobalMapping
43 {
44 
45 std::string MappingXYofZ::className =
47  "X = x + f(z), Y = y +g(z)");
48 
49 /**
50  * @class MappingXYofZ
51  * This class implements a constant-Jacobian mapping defined by
52  * \f[ \bar{x} = \bar{x}(x,z) = x + f(z) \f]
53  * \f[ \bar{y} = \bar{y}(y,z) = y + g(z) \f]
54  * \f[ \bar{z} = z \f]
55  * where \f$(\bar{x},\bar{y},\bar{z})\f$ are the Cartesian (physical)
56  * coordinates and \f$(x,y,z)\f$ are the transformed (computational)
57  * coordinates.
58  */
62  : Mapping(pSession, pFields)
63 {
64 }
65 
66 /**
67  *
68  */
71  const TiXmlElement *pMapping)
72 {
73  Mapping::v_InitObject(pFields, pMapping);
74 
75  m_constantJacobian = true;
76 
78  "Mapping X = x + f(z), Y = y+g(z) needs 3 velocity components.");
79 }
80 
82  const Array<OneD, Array<OneD, NekDouble>> &inarray,
83  Array<OneD, Array<OneD, NekDouble>> &outarray)
84 {
85  int physTot = m_fields[0]->GetTotPoints();
86 
87  // U1 = u1 + fz*u3
88  Vmath::Vvtvp(physTot, m_GeometricInfo[0], 1, inarray[2], 1, inarray[0], 1,
89  outarray[0], 1);
90 
91  // U2 = u2 + gz*u3
92  Vmath::Vvtvp(physTot, m_GeometricInfo[3], 1, inarray[2], 1, inarray[1], 1,
93  outarray[1], 1);
94 
95  // U3 = u3
96  Vmath::Vcopy(physTot, inarray[2], 1, outarray[2], 1);
97 }
98 
100  const Array<OneD, Array<OneD, NekDouble>> &inarray,
101  Array<OneD, Array<OneD, NekDouble>> &outarray)
102 {
103  int physTot = m_fields[0]->GetTotPoints();
104  Array<OneD, NekDouble> wk(physTot, 0.0);
105 
106  // U1 = u1
107  Vmath::Vcopy(physTot, inarray[0], 1, outarray[0], 1);
108 
109  // U2 = u2
110  Vmath::Vcopy(physTot, inarray[1], 1, outarray[1], 1);
111 
112  // U3 = u3 - fz*u1 - gz*u2
113  Vmath::Vmul(physTot, m_GeometricInfo[0], 1, inarray[0], 1, wk, 1);
114  Vmath::Vsub(physTot, inarray[2], 1, wk, 1, outarray[2], 1);
115  Vmath::Vmul(physTot, m_GeometricInfo[3], 1, inarray[1], 1, wk, 1);
116  Vmath::Vsub(physTot, inarray[2], 1, wk, 1, outarray[2], 1);
117 }
118 
120  const Array<OneD, Array<OneD, NekDouble>> &inarray,
121  Array<OneD, Array<OneD, NekDouble>> &outarray)
122 {
123  int physTot = m_fields[0]->GetTotPoints();
124  Array<OneD, NekDouble> wk(physTot, 0.0);
125 
126  // U1 = u1 - fz * u3
127  Vmath::Vmul(physTot, m_GeometricInfo[0], 1, inarray[2], 1, wk, 1);
128  Vmath::Vsub(physTot, inarray[0], 1, wk, 1, outarray[0], 1);
129 
130  // U2 = u2 - gz*u3
131  Vmath::Vmul(physTot, m_GeometricInfo[3], 1, inarray[2], 1, wk, 1);
132  Vmath::Vsub(physTot, inarray[1], 1, wk, 1, outarray[1], 1);
133 
134  // U3 = u3
135  Vmath::Vcopy(physTot, inarray[2], 1, outarray[2], 1);
136 }
137 
139  const Array<OneD, Array<OneD, NekDouble>> &inarray,
140  Array<OneD, Array<OneD, NekDouble>> &outarray)
141 {
142  int physTot = m_fields[0]->GetTotPoints();
143 
144  // U1 = u1
145  Vmath::Vcopy(physTot, inarray[0], 1, outarray[0], 1);
146 
147  // U2 = u2
148  Vmath::Vcopy(physTot, inarray[1], 1, outarray[1], 1);
149 
150  // U3 = u3 + fz*u1 + gz*u2
151  Vmath::Vmul(physTot, m_GeometricInfo[0], 1, inarray[0], 1, outarray[2], 1);
152  Vmath::Vvtvp(physTot, m_GeometricInfo[3], 1, inarray[1], 1, outarray[2], 1,
153  outarray[2], 1);
154  Vmath::Vadd(physTot, inarray[2], 1, outarray[2], 1, outarray[2], 1);
155 }
156 
158 {
159  int physTot = m_fields[0]->GetTotPoints();
160  Vmath::Fill(physTot, 1.0, outarray, 1);
161 }
162 
164  const Array<OneD, Array<OneD, NekDouble>> &inarray,
165  Array<OneD, NekDouble> &outarray)
166 {
167  boost::ignore_unused(inarray);
168 
169  int physTot = m_fields[0]->GetTotPoints();
170  Vmath::Zero(physTot, outarray, 1);
171 }
172 
174  Array<OneD, Array<OneD, NekDouble>> &outarray)
175 {
176  int physTot = m_fields[0]->GetTotPoints();
177  int nvel = m_nConvectiveFields;
178 
179  for (int i = 0; i < nvel * nvel; i++)
180  {
181  outarray[i] = Array<OneD, NekDouble>(physTot, 0.0);
182  }
183  // Fill diagonal with 1.0
184  for (int i = 0; i < nvel; i++)
185  {
186  Vmath::Sadd(physTot, 1.0, outarray[i * nvel + i], 1,
187  outarray[i * nvel + i], 1);
188  }
189 
190  // G_{13} and G_{31} = fz
191  Vmath::Vcopy(physTot, m_GeometricInfo[0], 1, outarray[0 * nvel + 2], 1);
192  Vmath::Vcopy(physTot, m_GeometricInfo[0], 1, outarray[2 * nvel + 0], 1);
193 
194  // G_{23} and G_{32} = gz
195  Vmath::Vcopy(physTot, m_GeometricInfo[3], 1, outarray[1 * nvel + 2], 1);
196  Vmath::Vcopy(physTot, m_GeometricInfo[3], 1, outarray[2 * nvel + 1], 1);
197 
198  // G^{33} = (1+fz^2 + gz^2)
199  Vmath::Vadd(physTot, m_GeometricInfo[2], 1, outarray[2 * nvel + 2], 1,
200  outarray[2 * nvel + 2], 1);
201  Vmath::Vadd(physTot, m_GeometricInfo[5], 1, outarray[2 * nvel + 2], 1,
202  outarray[2 * nvel + 2], 1);
203 }
204 
206  Array<OneD, Array<OneD, NekDouble>> &outarray)
207 {
208  int physTot = m_fields[0]->GetTotPoints();
209  int nvel = m_nConvectiveFields;
210  Array<OneD, NekDouble> wk(physTot, 0.0);
211 
212  for (int i = 0; i < nvel * nvel; i++)
213  {
214  outarray[i] = Array<OneD, NekDouble>(physTot, 0.0);
215  }
216  // Fill diagonal with 1.0
217  for (int i = 0; i < nvel; i++)
218  {
219  Vmath::Sadd(physTot, 1.0, outarray[i * nvel + i], 1,
220  outarray[i * nvel + i], 1);
221  }
222 
223  // G^{11} = 1+fz^2
224  Vmath::Vadd(physTot, outarray[0 * nvel + 0], 1, m_GeometricInfo[2], 1,
225  outarray[0 * nvel + 0], 1);
226 
227  // G^{22} = 1+gz^2
228  Vmath::Vadd(physTot, outarray[1 * nvel + 1], 1, m_GeometricInfo[5], 1,
229  outarray[1 * nvel + 1], 1);
230 
231  // G^{12} and G^{21} = fz*gz
232  Vmath::Vcopy(physTot, m_GeometricInfo[6], 1, outarray[0 * nvel + 1], 1);
233  Vmath::Vcopy(physTot, outarray[0 * nvel + 1], 1, outarray[1 * nvel + 0], 1);
234 
235  // G^{13} and G^{31} = -fz
236  Vmath::Vcopy(physTot, m_GeometricInfo[0], 1, wk, 1); // fz
237  Vmath::Neg(physTot, wk, 1);
238  Vmath::Vcopy(physTot, wk, 1, outarray[0 * nvel + 2], 1);
239  Vmath::Vcopy(physTot, wk, 1, outarray[2 * nvel + 0], 1);
240 
241  // G^{23} and G^{32} = -gz
242  Vmath::Vcopy(physTot, m_GeometricInfo[3], 1, wk, 1); // fz
243  Vmath::Neg(physTot, wk, 1);
244  Vmath::Vcopy(physTot, wk, 1, outarray[1 * nvel + 2], 1);
245  Vmath::Vcopy(physTot, wk, 1, outarray[2 * nvel + 1], 1);
246 }
247 
249  const Array<OneD, Array<OneD, NekDouble>> &inarray,
250  Array<OneD, Array<OneD, NekDouble>> &outarray)
251 {
252  int physTot = m_fields[0]->GetTotPoints();
253  int nvel = m_nConvectiveFields;
254 
255  for (int i = 0; i < nvel; i++)
256  {
257  for (int j = 0; j < nvel; j++)
258  {
259  outarray[i * nvel + j] = Array<OneD, NekDouble>(physTot, 0.0);
260  }
261  }
262 
263  // Calculate non-zero terms
264 
265  // outarray(0,2) = U3 * fzz
266  Vmath::Vmul(physTot, m_GeometricInfo[1], 1, inarray[2], 1,
267  outarray[0 * nvel + 2], 1);
268 
269  // outarray(1,2) = U3 * gzz
270  Vmath::Vmul(physTot, m_GeometricInfo[4], 1, inarray[2], 1,
271  outarray[1 * nvel + 2], 1);
272 }
273 
275  const Array<OneD, Array<OneD, NekDouble>> &inarray,
276  Array<OneD, Array<OneD, NekDouble>> &outarray)
277 {
278  int physTot = m_fields[0]->GetTotPoints();
279  int nvel = m_nConvectiveFields;
280 
281  for (int i = 0; i < nvel; i++)
282  {
283  for (int j = 0; j < nvel; j++)
284  {
285  outarray[i * nvel + j] = Array<OneD, NekDouble>(physTot, 0.0);
286  }
287  }
288 
289  // Calculate non-zero terms
290 
291  // outarray(2,2) = U1 * fzz + U^2 * gzz
292  Vmath::Vmul(physTot, m_GeometricInfo[1], 1, inarray[0], 1,
293  outarray[2 * nvel + 2], 1);
294  Vmath::Vvtvp(physTot, m_GeometricInfo[4], 1, inarray[1], 1,
295  outarray[2 * nvel + 2], 1, outarray[2 * nvel + 2], 1);
296 }
297 
299 {
300  int phystot = m_fields[0]->GetTotPoints();
301  // Allocation of geometry memory
303  for (int i = 0; i < m_GeometricInfo.size(); i++)
304  {
305  m_GeometricInfo[i] = Array<OneD, NekDouble>(phystot, 0.0);
306  }
307 
308  bool waveSpace = m_fields[0]->GetWaveSpace();
309  m_fields[0]->SetWaveSpace(false);
310 
311  // Calculate derivatives of x transformation --> m_GeometricInfo 0-1
312  m_fields[0]->PhysDeriv(MultiRegions::DirCartesianMap[2], m_coords[0],
313  m_GeometricInfo[0]);
315  m_GeometricInfo[1]);
316  // m_GeometricInfo[2] = fz^2
317  Vmath::Vmul(phystot, m_GeometricInfo[0], 1, m_GeometricInfo[0], 1,
318  m_GeometricInfo[2], 1);
319 
320  // Calculate derivatives of transformation -> m_GeometricInfo 3-4
321  m_fields[0]->PhysDeriv(MultiRegions::DirCartesianMap[2], m_coords[1],
322  m_GeometricInfo[3]);
324  m_GeometricInfo[4]);
325  // m_GeometricInfo[5] = gz^2
326  Vmath::Vmul(phystot, m_GeometricInfo[3], 1, m_GeometricInfo[3], 1,
327  m_GeometricInfo[5], 1);
328 
329  // m_GeometricInfo[6] = gz*fz
330  Vmath::Vmul(phystot, m_GeometricInfo[0], 1, m_GeometricInfo[3], 1,
331  m_GeometricInfo[6], 1);
332 
333  m_fields[0]->SetWaveSpace(waveSpace);
334 }
335 
336 } // namespace GlobalMapping
337 } // namespace Nektar
#define ASSERTL0(condition, msg)
Definition: ErrorUtil.hpp:215
Base class for mapping to be applied to the coordinate system.
Definition: Mapping.h:69
int m_nConvectiveFields
Number of velocity components.
Definition: Mapping.h:414
Array< OneD, Array< OneD, NekDouble > > m_GeometricInfo
Array with metric terms of the mapping.
Definition: Mapping.h:412
Array< OneD, Array< OneD, NekDouble > > m_coords
Array with the Cartesian coordinates.
Definition: Mapping.h:408
Array< OneD, MultiRegions::ExpListSharedPtr > m_fields
Definition: Mapping.h:406
virtual GLOBAL_MAPPING_EXPORT void v_InitObject(const Array< OneD, MultiRegions::ExpListSharedPtr > &pFields, const TiXmlElement *pMapping)
Definition: Mapping.cpp:101
bool m_constantJacobian
Flag defining if the Jacobian is constant.
Definition: Mapping.h:423
virtual GLOBAL_MAPPING_EXPORT void v_InitObject(const Array< OneD, MultiRegions::ExpListSharedPtr > &pFields, const TiXmlElement *pMapping) override
virtual GLOBAL_MAPPING_EXPORT void v_GetMetricTensor(Array< OneD, Array< OneD, NekDouble >> &outarray) override
virtual GLOBAL_MAPPING_EXPORT void v_DotGradJacobian(const Array< OneD, Array< OneD, NekDouble >> &inarray, Array< OneD, NekDouble > &outarray) override
virtual GLOBAL_MAPPING_EXPORT void v_ApplyChristoffelCovar(const Array< OneD, Array< OneD, NekDouble >> &inarray, Array< OneD, Array< OneD, NekDouble >> &outarray) override
virtual GLOBAL_MAPPING_EXPORT void v_ApplyChristoffelContravar(const Array< OneD, Array< OneD, NekDouble >> &inarray, Array< OneD, Array< OneD, NekDouble >> &outarray) override
virtual GLOBAL_MAPPING_EXPORT void v_UpdateGeomInfo() override
virtual GLOBAL_MAPPING_EXPORT void v_ContravarFromCartesian(const Array< OneD, Array< OneD, NekDouble >> &inarray, Array< OneD, Array< OneD, NekDouble >> &outarray) override
virtual GLOBAL_MAPPING_EXPORT void v_GetInvMetricTensor(Array< OneD, Array< OneD, NekDouble >> &outarray) override
static std::string className
Name of the class.
Definition: MappingXYofZ.h:69
virtual GLOBAL_MAPPING_EXPORT void v_ContravarToCartesian(const Array< OneD, Array< OneD, NekDouble >> &inarray, Array< OneD, Array< OneD, NekDouble >> &outarray) override
static GLOBAL_MAPPING_EXPORT MappingSharedPtr create(const LibUtilities::SessionReaderSharedPtr &pSession, const Array< OneD, MultiRegions::ExpListSharedPtr > &pFields, const TiXmlElement *pMapping)
Creates an instance of this class.
Definition: MappingXYofZ.h:57
MappingXYofZ(const LibUtilities::SessionReaderSharedPtr &pSession, const Array< OneD, MultiRegions::ExpListSharedPtr > &pFields)
virtual GLOBAL_MAPPING_EXPORT void v_CovarFromCartesian(const Array< OneD, Array< OneD, NekDouble >> &inarray, Array< OneD, Array< OneD, NekDouble >> &outarray) override
virtual GLOBAL_MAPPING_EXPORT void v_CovarToCartesian(const Array< OneD, Array< OneD, NekDouble >> &inarray, Array< OneD, Array< OneD, NekDouble >> &outarray) override
virtual GLOBAL_MAPPING_EXPORT void v_GetJacobian(Array< OneD, NekDouble > &outarray) override
tKey RegisterCreatorFunction(tKey idKey, CreatorFunction classCreator, std::string pDesc="")
Register a class with the factory.
Definition: NekFactory.hpp:198
MappingFactory & GetMappingFactory()
Declaration of the mapping factory singleton.
Definition: Mapping.cpp:53
std::shared_ptr< SessionReader > SessionReaderSharedPtr
MultiRegions::Direction const DirCartesianMap[]
Definition: ExpList.h:91
The above copyright notice and this permission notice shall be included.
Definition: CoupledSolver.h:2
void Vmul(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Multiply vector z = x*y.
Definition: Vmath.cpp:209
void Neg(int n, T *x, const int incx)
Negate x = -x.
Definition: Vmath.cpp:518
void Vvtvp(int n, const T *w, const int incw, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
vvtvp (vector times vector plus vector): z = w*x + y
Definition: Vmath.cpp:574
void Vadd(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Add vector z = x+y.
Definition: Vmath.cpp:359
void Zero(int n, T *x, const int incx)
Zero vector.
Definition: Vmath.cpp:492
void Fill(int n, const T alpha, T *x, const int incx)
Fill a vector with a constant value.
Definition: Vmath.cpp:45
void Sadd(int n, const T alpha, const T *x, const int incx, T *y, const int incy)
Add scalar y = alpha + x.
Definition: Vmath.cpp:384
void Vcopy(int n, const T *x, const int incx, T *y, const int incy)
Definition: Vmath.cpp:1255
void Vsub(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Subtract vector z = x-y.
Definition: Vmath.cpp:419