Nektar++
NodalTriFekete.cpp
Go to the documentation of this file.
1 ///////////////////////////////////////////////////////////////////////////////
2 //
3 // File: NodalTriFekete.cpp
4 //
5 // For more information, please see: http://www.nektar.info
6 //
7 // The MIT License
8 //
9 // Copyright (c) 2006 Division of Applied Mathematics, Brown University (USA),
10 // Department of Aeronautics, Imperial College London (UK), and Scientific
11 // Computing and Imaging Institute, University of Utah (USA).
12 //
13 // Permission is hereby granted, free of charge, to any person obtaining a
14 // copy of this software and associated documentation files (the "Software"),
15 // to deal in the Software without restriction, including without limitation
16 // the rights to use, copy, modify, merge, publish, distribute, sublicense,
17 // and/or sell copies of the Software, and to permit persons to whom the
18 // Software is furnished to do so, subject to the following conditions:
19 //
20 // The above copyright notice and this permission notice shall be included
21 // in all copies or substantial portions of the Software.
22 //
23 // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
24 // OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
25 // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
26 // THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
27 // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
28 // FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
29 // DEALINGS IN THE SOFTWARE.
30 //
31 // Description: 2D Nodal Triangle Fekete Point Definitions
32 //
33 ///////////////////////////////////////////////////////////////////////////////
34 
44 
45 namespace Nektar
46 {
47 namespace LibUtilities
48 {
50  PointsKey(0, eNodalTriFekete), NodalTriFekete::Create)};
51 
52 // ////////////////////////////////////////////////////////
53 // Coordinate the nodal trianlge Fekete points
55 {
56  // Allocate the storage for points
58 
59  int index = 0, isum = 0;
60  const int offset = 3; // offset to match Datafile
61  NekDouble b, c;
62  unsigned int numPoints = GetNumPoints();
63 
64  // initialize values
65  for (unsigned int i = 0; i < numPoints - 2; ++i)
66  {
67  index += NodalTriFeketeNPTS[i];
68  }
69 
70  for (unsigned int i = 0; i < NodalTriFeketeNPTS[numPoints - 2];
71  ++i, ++index)
72  {
73  if (int(NodalTriFeketeData[index][0]))
74  {
75  b = NodalTriFeketeData[index][4];
76  c = NodalTriFeketeData[index][5];
77 
78  m_points[0][isum] = 2.0 * b - 1.0;
79  m_points[1][isum] = 2.0 * c - 1.0;
80  isum++;
81  continue;
82  } // end symmetry1
83 
84  if (int(NodalTriFeketeData[index][1]) == 1)
85  {
86  for (unsigned int j = 0; j < 3; ++j)
87  {
88  b = NodalTriFeketeData[index][offset + perm3A_2d[j][1]];
89  c = NodalTriFeketeData[index][offset + perm3A_2d[j][2]];
90  m_points[0][isum] = 2.0 * b - 1.0;
91  m_points[1][isum] = 2.0 * c - 1.0;
92  isum++;
93  } // end j
94  continue;
95  } // end symmetry3a
96 
97  if (int(NodalTriFeketeData[index][1]) == 2)
98  {
99  for (unsigned int j = 0; j < 3; ++j)
100  {
101  b = NodalTriFeketeData[index][offset + perm3B_2d[j][1]];
102  c = NodalTriFeketeData[index][offset + perm3B_2d[j][2]];
103  m_points[0][isum] = 2.0 * b - 1.0;
104  m_points[1][isum] = 2.0 * c - 1.0;
105  isum++;
106  } // end j
107  continue;
108  } // end symmetry3b
109 
110  if (int(NodalTriFeketeData[index][2]))
111  {
112  for (unsigned int j = 0; j < 6; ++j)
113  {
114  b = NodalTriFeketeData[index][offset + perm6_2d[j][1]];
115  c = NodalTriFeketeData[index][offset + perm6_2d[j][2]];
116  m_points[0][isum] = 2.0 * b - 1.0;
117  m_points[1][isum] = 2.0 * c - 1.0;
118  isum++;
119  } // end j
120  continue;
121  } // end symmetry6
122  } // end npts
123 
125 
126  ASSERTL1((static_cast<unsigned int>(isum) == m_pointsKey.GetTotNumPoints()),
127  "sum not equal to npts");
128 
130  numPoints - 1, m_points[0], m_points[1]);
131 }
132 
134 {
135  // Allocate the storage for points
137 
138  typedef DataType T;
139 
140  // Solve the Vandermonde system of integrals for the weight vector
141  NekVector<T> w = m_util->GetWeights();
143 }
144 
145 // ////////////////////////////////////////
146 // CalculateInterpMatrix()
148  const Array<OneD, const NekDouble> &xia,
150 {
152  xi[0] = xia;
153  xi[1] = yia;
154 
155  std::shared_ptr<NekMatrix<NekDouble>> mat =
156  m_util->GetInterpolationMatrix(xi);
157  Vmath::Vcopy(mat->GetRows() * mat->GetColumns(), mat->GetRawPtr(), 1,
158  &interp[0], 1);
159 }
160 
161 // ////////////////////////////////////////
162 // CalculateDerivMatrix()
164 {
165  // Allocate the derivative matrix.
167 
168  m_derivmatrix[0] = m_util->GetDerivMatrix(0);
169  m_derivmatrix[1] = m_util->GetDerivMatrix(1);
170 }
171 
172 std::shared_ptr<PointsBaseType> NodalTriFekete::Create(const PointsKey &key)
173 {
174  std::shared_ptr<PointsBaseType> returnval(
176  returnval->Initialize();
177  return returnval;
178 }
179 
181 {
182  int i, j;
183  int cnt;
184  int istart, iend;
185 
186  const int nVerts = 3;
187  const int nEdgeInteriorPoints = GetNumPoints() - 2;
188  const int nBoundaryPoints = 3 * nEdgeInteriorPoints + 3;
189 
190  if (nEdgeInteriorPoints == 0)
191  {
192  return;
193  }
194 
195  // group the points of edge 1 together;
196  istart = nVerts;
197  for (i = cnt = istart; i < nBoundaryPoints; i++)
198  {
199  if (fabs(m_points[1][i] + 1.0) < NekConstants::kNekZeroTol)
200  {
201  std::swap(m_points[0][cnt], m_points[0][i]);
202  std::swap(m_points[1][cnt], m_points[1][i]);
203  cnt++;
204  }
205  }
206 
207  // bubble sort edge 1 (counterclockwise numbering)
208  iend = istart + nEdgeInteriorPoints;
209  for (i = istart; i < iend; i++)
210  {
211  for (j = istart + 1; j < iend; j++)
212  {
213  if (m_points[0][j] < m_points[0][j - 1])
214  {
215  std::swap(m_points[0][j], m_points[0][j - 1]);
216  std::swap(m_points[1][j], m_points[1][j - 1]);
217  }
218  }
219  }
220 
221  // group the points of edge 2 together;
222  istart = iend;
223  for (i = cnt = istart; i < nBoundaryPoints; i++)
224  {
225  if (fabs(m_points[1][i] + m_points[0][i]) < NekConstants::kNekZeroTol)
226  {
227  std::swap(m_points[0][cnt], m_points[0][i]);
228  std::swap(m_points[1][cnt], m_points[1][i]);
229  cnt++;
230  }
231  }
232 
233  // bubble sort edge 2 (counterclockwise numbering)
234  iend = istart + nEdgeInteriorPoints;
235  for (i = istart; i < iend; i++)
236  {
237  for (j = istart + 1; j < iend; j++)
238  {
239  if (m_points[1][j] < m_points[1][j - 1])
240  {
241  std::swap(m_points[0][j], m_points[0][j - 1]);
242  std::swap(m_points[1][j], m_points[1][j - 1]);
243  }
244  }
245  }
246 
247  // group the points of edge 3 together;
248  istart = iend;
249  for (i = cnt = istart; i < nBoundaryPoints; i++)
250  {
251  if (fabs(m_points[0][i] + 1.0) < NekConstants::kNekZeroTol)
252  {
253  std::swap(m_points[0][cnt], m_points[0][i]);
254  std::swap(m_points[1][cnt], m_points[1][i]);
255  cnt++;
256  }
257  }
258  // bubble sort edge 3 (counterclockwise numbering)
259  iend = istart + nEdgeInteriorPoints;
260  for (i = istart; i < iend; i++)
261  {
262  for (j = istart + 1; j < iend; j++)
263  {
264  if (m_points[1][j] > m_points[1][j - 1])
265  {
266  std::swap(m_points[0][j], m_points[0][j - 1]);
267  std::swap(m_points[1][j], m_points[1][j - 1]);
268  }
269  }
270  }
271 
272  if (GetNumPoints() < 5)
273  {
274  // at numpoints = 4 there is only one interior point so doesnt
275  // need sorting
276  return;
277  }
278 
279  // someone forgot to finish this piece of code and tell anyone
280  // that they didnt
281  // face interior nodes needs to be considered
282  // make a copy of the unsorted nodes
283  // bubble sort by smallest y
284  // which will put them into sets of ever decreasing size
285  // which can be bubble sorted by x to obtain the distrobution
286 
287  Array<OneD, NekDouble> xc(m_points[0].size() - iend);
288  Array<OneD, NekDouble> yc(m_points[0].size() - iend);
289  int ct = 0;
290  for (i = iend; i < m_points[0].size(); i++, ct++)
291  {
292  xc[ct] = m_points[0][i];
293  yc[ct] = m_points[1][i];
294  }
295 
296  // sort smallest first
297  bool repeat = true;
298  while (repeat)
299  {
300  repeat = false;
301  for (i = 0; i < xc.size() - 1; i++)
302  {
303  if (yc[i] > yc[i + 1])
304  {
305  std::swap(xc[i], xc[i + 1]);
306  std::swap(yc[i], yc[i + 1]);
307  repeat = true;
308  }
309  }
310  }
311 
312  int offset = 0;
313  int npl = GetNumPoints() - 3;
314  while (npl > 1)
315  {
316  repeat = true;
317  while (repeat)
318  {
319  repeat = false;
320  for (i = offset; i < offset + npl - 1; i++)
321  {
322  if (xc[i] > xc[i + 1])
323  {
324  std::swap(xc[i], xc[i + 1]);
325  std::swap(yc[i], yc[i + 1]);
326  repeat = true;
327  }
328  }
329  }
330  offset += npl;
331  npl--;
332  }
333 
334  // copy back in
335  ct = 0;
336  for (i = iend; i < m_points[0].size(); i++, ct++)
337  {
338  m_points[0][i] = xc[ct];
339  m_points[1][i] = yc[ct];
340  }
341  return;
342 }
343 
344 } // namespace LibUtilities
345 } // namespace Nektar
#define ASSERTL1(condition, msg)
Assert Level 1 – Debugging which is used whether in FULLDEBUG or DEBUG compilation mode....
Definition: ErrorUtil.hpp:249
size_type size() const
Returns the array's size.
bool RegisterCreator(const KeyType &key, const CreateFuncType &createFunc)
Register the given function and associate it with the key. The return value is just to facilitate cal...
Definition: NekManager.hpp:170
virtual void v_CalculatePoints() override
void CalculateInterpMatrix(const Array< OneD, const NekDouble > &xi, const Array< OneD, const NekDouble > &yi, Array< OneD, NekDouble > &interp)
virtual void v_CalculateWeights() override
std::shared_ptr< NodalUtilTriangle > m_util
static std::shared_ptr< PointsBaseType > Create(const PointsKey &key)
virtual void v_CalculateDerivMatrix() override
Array< OneD, DataType > m_points[3]
Storage for the point locations, allowing for up to a 3D points storage.
Definition: Points.h:375
MatrixSharedPtrType m_derivmatrix[3]
Derivative matrices.
Definition: Points.h:381
PointsKey m_pointsKey
Points type for this points distributions.
Definition: Points.h:372
unsigned int GetNumPoints() const
Definition: Points.h:273
Array< OneD, DataType > m_weights
Quadrature weights for the weights.
Definition: Points.h:377
Defines a specification for a set of points.
Definition: Points.h:59
unsigned int GetTotNumPoints() const
Definition: Points.h:177
General purpose memory allocation routines with the ability to allocate from thread specific memory p...
static std::shared_ptr< DataType > AllocateSharedPtr(const Args &...args)
Allocate a shared pointer from the memory pool.
Array< OneD, DataType > & GetPtr()
Definition: NekVector.cpp:217
unsigned int GetRows() const
Definition: NekVector.cpp:206
static const unsigned int perm3A_2d[3][3]
PointsManagerT & PointsManager(void)
static const NekDouble NodalTriFeketeData[][6]
static const unsigned int perm6_2d[6][3]
static const unsigned int perm3B_2d[3][3]
static const unsigned int NodalTriFeketeNPTS[NodalTriFeketeAvailable]
@ eNodalTriFekete
2D Nodal Fekete Points on a Triangle
Definition: PointsType.h:84
static const NekDouble kNekZeroTol
The above copyright notice and this permission notice shall be included.
Definition: CoupledSolver.h:2
double NekDouble
void Vcopy(int n, const T *x, const int incx, T *y, const int incy)
Definition: Vmath.cpp:1255