Nektar++
PressureInflowFileBC.cpp
Go to the documentation of this file.
1 ///////////////////////////////////////////////////////////////////////////////
2 //
3 // File: PressureInflowFileBC.cpp
4 //
5 // For more information, please see: http://www.nektar.info
6 //
7 // The MIT License
8 //
9 // Copyright (c) 2006 Division of Applied Mathematics, Brown University (USA),
10 // Department of Aeronautics, Imperial College London (UK), and Scientific
11 // Computing and Imaging Institute, University of Utah (USA).
12 //
13 // Permission is hereby granted, free of charge, to any person obtaining a
14 // copy of this software and associated documentation files (the "Software"),
15 // to deal in the Software without restriction, including without limitation
16 // the rights to use, copy, modify, merge, publish, distribute, sublicense,
17 // and/or sell copies of the Software, and to permit persons to whom the
18 // Software is furnished to do so, subject to the following conditions:
19 //
20 // The above copyright notice and this permission notice shall be included
21 // in all copies or substantial portions of the Software.
22 //
23 // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
24 // OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
25 // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
26 // THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
27 // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
28 // FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
29 // DEALINGS IN THE SOFTWARE.
30 //
31 // Description: Pressure inflow boundary condition
32 //
33 ///////////////////////////////////////////////////////////////////////////////
34 
35 #include <boost/core/ignore_unused.hpp>
36 
37 #include "PressureInflowFileBC.h"
38 
39 using namespace std;
40 
41 namespace Nektar
42 {
43 
44 std::string PressureInflowFileBC::className =
46  "PressureInflowFile", PressureInflowFileBC::create,
47  "Pressure inflow (file) boundary condition.");
48 
49 PressureInflowFileBC::PressureInflowFileBC(
52  const Array<OneD, Array<OneD, NekDouble>> &pTraceNormals,
53  const int pSpaceDim, const int bcRegion, const int cnt)
54  : CFSBndCond(pSession, pFields, pTraceNormals, pSpaceDim, bcRegion, cnt)
55 {
56  int nvariables = m_fields.size();
57  // Loop over Boundary Regions for PressureInflowFileBC
59 
60  int numBCPts =
61  m_fields[0]->GetBndCondExpansions()[m_bcRegion]->GetNpoints();
62  for (int i = 0; i < nvariables; ++i)
63  {
64  m_fieldStorage[i] = Array<OneD, NekDouble>(numBCPts, 0.0);
65  Vmath::Vcopy(numBCPts,
66  m_fields[i]->GetBndCondExpansions()[m_bcRegion]->GetPhys(),
67  1, m_fieldStorage[i], 1);
68  }
69 }
70 
73  Array<OneD, Array<OneD, NekDouble>> &physarray, const NekDouble &time)
74 {
75  boost::ignore_unused(time);
76 
77  int i, j;
78  int nTracePts = m_fields[0]->GetTrace()->GetNpoints();
79  int nVariables = physarray.size();
80  int nDimensions = m_spacedim;
81 
82  const Array<OneD, const int> &traceBndMap = m_fields[0]->GetTraceBndMap();
83 
84  // Computing the normal velocity for characteristics coming
85  // from inside the computational domain
86  Array<OneD, NekDouble> Vn(nTracePts, 0.0);
87  Array<OneD, NekDouble> Vel(nTracePts, 0.0);
88  for (i = 0; i < nDimensions; ++i)
89  {
90  Vmath::Vdiv(nTracePts, Fwd[i + 1], 1, Fwd[0], 1, Vel, 1);
91  Vmath::Vvtvp(nTracePts, m_traceNormals[i], 1, Vel, 1, Vn, 1, Vn, 1);
92  }
93 
94  // Computing the absolute value of the velocity in order to compute the
95  // Mach number to decide whether supersonic or subsonic
96  Array<OneD, NekDouble> absVel(nTracePts, 0.0);
97  m_varConv->GetAbsoluteVelocity(Fwd, absVel);
98 
99  // Get speed of sound
100  Array<OneD, NekDouble> pressure(nTracePts);
101  Array<OneD, NekDouble> soundSpeed(nTracePts);
102 
103  m_varConv->GetPressure(Fwd, pressure);
104  m_varConv->GetSoundSpeed(Fwd, soundSpeed);
105 
106  // Get Mach
107  Array<OneD, NekDouble> Mach(nTracePts, 0.0);
108  Vmath::Vdiv(nTracePts, Vn, 1, soundSpeed, 1, Mach, 1);
109  Vmath::Vabs(nTracePts, Mach, 1, Mach, 1);
110 
111  // Auxiliary variables
112  int e, id1, id2, npts, pnt;
113  NekDouble rhoeb;
114 
115  // Loop on the m_bcRegions
116  for (e = 0;
117  e < m_fields[0]->GetBndCondExpansions()[m_bcRegion]->GetExpSize(); ++e)
118  {
119  npts = m_fields[0]
120  ->GetBndCondExpansions()[m_bcRegion]
121  ->GetExp(e)
122  ->GetTotPoints();
123  id1 =
124  m_fields[0]->GetBndCondExpansions()[m_bcRegion]->GetPhys_Offset(e);
125  id2 =
126  m_fields[0]->GetTrace()->GetPhys_Offset(traceBndMap[m_offset + e]);
127 
128  // Get internal energy
129  Array<OneD, NekDouble> tmpPressure(npts, pressure + id2);
130  Array<OneD, NekDouble> rho(npts, Fwd[0] + id2);
131  Array<OneD, NekDouble> e(npts);
132  m_varConv->GetEFromRhoP(rho, tmpPressure, e);
133 
134  // Loop on points of m_bcRegion 'e'
135  for (i = 0; i < npts; i++)
136  {
137  pnt = id2 + i;
138 
139  // Subsonic flows
140  if (Mach[pnt] < 0.99)
141  {
142  // Partial extrapolation for subsonic cases
143  for (j = 0; j < nVariables - 1; ++j)
144  {
145  (m_fields[j]
146  ->GetBndCondExpansions()[m_bcRegion]
147  ->UpdatePhys())[id1 + i] = m_fieldStorage[j][id1 + i];
148  }
149 
150  // Kinetic energy calculation
151  NekDouble Ek = 0.0;
152  for (j = 1; j < nVariables - 1; ++j)
153  {
154  Ek += 0.5 *
155  (m_fieldStorage[j][id1 + i] *
156  m_fieldStorage[j][id1 + i]) /
157  m_fieldStorage[0][id1 + i];
158  }
159 
160  rhoeb = Fwd[0][pnt] * e[i] + Ek;
161 
162  (m_fields[nVariables - 1]
163  ->GetBndCondExpansions()[m_bcRegion]
164  ->UpdatePhys())[id1 + i] = rhoeb;
165  }
166  // Supersonic flows
167  else
168  {
169  for (j = 0; j < nVariables; ++j)
170  {
171  // Extrapolation for supersonic cases
172  (m_fields[j]
173  ->GetBndCondExpansions()[m_bcRegion]
174  ->UpdatePhys())[id1 + i] = Fwd[j][pnt];
175  }
176  }
177  }
178  }
179 }
180 
181 } // namespace Nektar
Encapsulates the user-defined boundary conditions for compressible flow solver.
Definition: CFSBndCond.h:70
int m_spacedim
Space dimension.
Definition: CFSBndCond.h:95
Array< OneD, Array< OneD, NekDouble > > m_traceNormals
Trace normals.
Definition: CFSBndCond.h:93
int m_bcRegion
Id of the boundary region.
Definition: CFSBndCond.h:109
VariableConverterSharedPtr m_varConv
Auxiliary object to convert variables.
Definition: CFSBndCond.h:97
int m_offset
Offset.
Definition: CFSBndCond.h:111
Array< OneD, MultiRegions::ExpListSharedPtr > m_fields
Array of fields.
Definition: CFSBndCond.h:91
tKey RegisterCreatorFunction(tKey idKey, CreatorFunction classCreator, std::string pDesc="")
Register a class with the factory.
Definition: NekFactory.hpp:198
Array< OneD, Array< OneD, NekDouble > > m_fieldStorage
virtual void v_Apply(Array< OneD, Array< OneD, NekDouble >> &Fwd, Array< OneD, Array< OneD, NekDouble >> &physarray, const NekDouble &time) override
std::shared_ptr< SessionReader > SessionReaderSharedPtr
The above copyright notice and this permission notice shall be included.
Definition: CoupledSolver.h:2
CFSBndCondFactory & GetCFSBndCondFactory()
Declaration of the boundary condition factory singleton.
Definition: CFSBndCond.cpp:41
double NekDouble
void Vabs(int n, const T *x, const int incx, T *y, const int incy)
vabs: y = |x|
Definition: Vmath.cpp:553
void Vvtvp(int n, const T *w, const int incw, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
vvtvp (vector times vector plus vector): z = w*x + y
Definition: Vmath.cpp:574
void Vdiv(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Multiply vector z = x/y.
Definition: Vmath.cpp:284
void Vcopy(int n, const T *x, const int incx, T *y, const int incy)
Definition: Vmath.cpp:1255