Nektar++
PressureOutflowBC.cpp
Go to the documentation of this file.
1 ///////////////////////////////////////////////////////////////////////////////
2 //
3 // File: PressureOutflowBC.cpp
4 //
5 // For more information, please see: http://www.nektar.info
6 //
7 // The MIT License
8 //
9 // Copyright (c) 2006 Division of Applied Mathematics, Brown University (USA),
10 // Department of Aeronautics, Imperial College London (UK), and Scientific
11 // Computing and Imaging Institute, University of Utah (USA).
12 //
13 // Permission is hereby granted, free of charge, to any person obtaining a
14 // copy of this software and associated documentation files (the "Software"),
15 // to deal in the Software without restriction, including without limitation
16 // the rights to use, copy, modify, merge, publish, distribute, sublicense,
17 // and/or sell copies of the Software, and to permit persons to whom the
18 // Software is furnished to do so, subject to the following conditions:
19 //
20 // The above copyright notice and this permission notice shall be included
21 // in all copies or substantial portions of the Software.
22 //
23 // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
24 // OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
25 // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
26 // THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
27 // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
28 // FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
29 // DEALINGS IN THE SOFTWARE.
30 //
31 // Description: Pressure outflow boundary condition
32 //
33 ///////////////////////////////////////////////////////////////////////////////
34 
35 #include <boost/core/ignore_unused.hpp>
36 
37 #include "PressureOutflowBC.h"
38 
39 using namespace std;
40 
41 namespace Nektar
42 {
43 
44 std::string PressureOutflowBC::className =
46  "PressureOutflow", PressureOutflowBC::create,
47  "Pressure outflow boundary condition.");
48 
49 PressureOutflowBC::PressureOutflowBC(
52  const Array<OneD, Array<OneD, NekDouble>> &pTraceNormals,
53  const int pSpaceDim, const int bcRegion, const int cnt)
54  : CFSBndCond(pSession, pFields, pTraceNormals, pSpaceDim, bcRegion, cnt)
55 {
56  int numBCPts =
57  m_fields[0]->GetBndCondExpansions()[m_bcRegion]->GetNpoints();
59 
60  // Get Pressure
62  numBCPts,
63  m_fields[m_spacedim + 1]->GetBndCondExpansions()[m_bcRegion]->GetPhys(),
64  1, m_pressureStorage, 1);
65 }
66 
68  Array<OneD, Array<OneD, NekDouble>> &physarray,
69  const NekDouble &time)
70 {
71  boost::ignore_unused(time);
72 
73  int i, j;
74  int nTracePts = m_fields[0]->GetTrace()->GetNpoints();
75  int nVariables = physarray.size();
76  int nDimensions = m_spacedim;
77 
78  const Array<OneD, const int> &traceBndMap = m_fields[0]->GetTraceBndMap();
79 
80  // Computing the normal velocity for characteristics coming
81  // from inside the computational domain
82  Array<OneD, NekDouble> Vn(nTracePts, 0.0);
83  Array<OneD, NekDouble> Vel(nTracePts, 0.0);
84  for (i = 0; i < nDimensions; ++i)
85  {
86  Vmath::Vdiv(nTracePts, Fwd[i + 1], 1, Fwd[0], 1, Vel, 1);
87  Vmath::Vvtvp(nTracePts, m_traceNormals[i], 1, Vel, 1, Vn, 1, Vn, 1);
88  }
89 
90  // Computing the absolute value of the velocity in order to compute the
91  // Mach number to decide whether supersonic or subsonic
92  Array<OneD, NekDouble> absVel(nTracePts, 0.0);
93  m_varConv->GetAbsoluteVelocity(Fwd, absVel);
94 
95  // Get speed of sound
96  Array<OneD, NekDouble> soundSpeed(nTracePts);
97  m_varConv->GetSoundSpeed(Fwd, soundSpeed);
98 
99  // Get Mach
100  Array<OneD, NekDouble> Mach(nTracePts, 0.0);
101  Vmath::Vdiv(nTracePts, Vn, 1, soundSpeed, 1, Mach, 1);
102  Vmath::Vabs(nTracePts, Mach, 1, Mach, 1);
103 
104  // Auxiliary variables
105  int e, id1, id2, npts, pnt;
106  NekDouble rhoeb;
107 
108  // Loop on the m_bcRegions
109  for (e = 0;
110  e < m_fields[0]->GetBndCondExpansions()[m_bcRegion]->GetExpSize(); ++e)
111  {
112  npts = m_fields[0]
113  ->GetBndCondExpansions()[m_bcRegion]
114  ->GetExp(e)
115  ->GetTotPoints();
116  id1 =
117  m_fields[0]->GetBndCondExpansions()[m_bcRegion]->GetPhys_Offset(e);
118  id2 =
119  m_fields[0]->GetTrace()->GetPhys_Offset(traceBndMap[m_offset + e]);
120 
121  // Get internal energy
123  Array<OneD, NekDouble> rho(npts, Fwd[0] + id2);
124  Array<OneD, NekDouble> Ei(npts);
125  m_varConv->GetEFromRhoP(rho, pressure, Ei);
126 
127  // Loop on points of m_bcRegion 'e'
128  for (i = 0; i < npts; i++)
129  {
130  pnt = id2 + i;
131 
132  // Subsonic flows
133  if (Mach[pnt] < 0.99)
134  {
135  // Kinetic energy calculation
136  NekDouble Ek = 0.0;
137  for (j = 1; j < nVariables - 1; ++j)
138  {
139  Ek += 0.5 * (Fwd[j][pnt] * Fwd[j][pnt]) / Fwd[0][pnt];
140  }
141 
142  rhoeb = Fwd[0][pnt] * Ei[i] + Ek;
143 
144  // Partial extrapolation for subsonic cases
145  for (j = 0; j < nVariables - 1; ++j)
146  {
147  (m_fields[j]
148  ->GetBndCondExpansions()[m_bcRegion]
149  ->UpdatePhys())[id1 + i] = Fwd[j][pnt];
150  }
151 
152  (m_fields[nVariables - 1]
153  ->GetBndCondExpansions()[m_bcRegion]
154  ->UpdatePhys())[id1 + i] = rhoeb;
155  }
156  // Supersonic flows
157  else
158  {
159  for (j = 0; j < nVariables; ++j)
160  {
161  // Extrapolation for supersonic cases
162  (m_fields[j]
163  ->GetBndCondExpansions()[m_bcRegion]
164  ->UpdatePhys())[id1 + i] = Fwd[j][pnt];
165  }
166  }
167  }
168  }
169 }
170 
171 } // namespace Nektar
Encapsulates the user-defined boundary conditions for compressible flow solver.
Definition: CFSBndCond.h:70
int m_spacedim
Space dimension.
Definition: CFSBndCond.h:95
Array< OneD, Array< OneD, NekDouble > > m_traceNormals
Trace normals.
Definition: CFSBndCond.h:93
int m_bcRegion
Id of the boundary region.
Definition: CFSBndCond.h:109
VariableConverterSharedPtr m_varConv
Auxiliary object to convert variables.
Definition: CFSBndCond.h:97
int m_offset
Offset.
Definition: CFSBndCond.h:111
Array< OneD, MultiRegions::ExpListSharedPtr > m_fields
Array of fields.
Definition: CFSBndCond.h:91
tKey RegisterCreatorFunction(tKey idKey, CreatorFunction classCreator, std::string pDesc="")
Register a class with the factory.
Definition: NekFactory.hpp:198
Array< OneD, NekDouble > m_pressureStorage
virtual void v_Apply(Array< OneD, Array< OneD, NekDouble >> &Fwd, Array< OneD, Array< OneD, NekDouble >> &physarray, const NekDouble &time) override
std::shared_ptr< SessionReader > SessionReaderSharedPtr
The above copyright notice and this permission notice shall be included.
Definition: CoupledSolver.h:2
CFSBndCondFactory & GetCFSBndCondFactory()
Declaration of the boundary condition factory singleton.
Definition: CFSBndCond.cpp:41
double NekDouble
void Vabs(int n, const T *x, const int incx, T *y, const int incy)
vabs: y = |x|
Definition: Vmath.cpp:553
void Vvtvp(int n, const T *w, const int incw, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
vvtvp (vector times vector plus vector): z = w*x + y
Definition: Vmath.cpp:574
void Vdiv(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Multiply vector z = x/y.
Definition: Vmath.cpp:284
void Vcopy(int n, const T *x, const int incx, T *y, const int incy)
Definition: Vmath.cpp:1255