Nektar++
ProcessInterpPtsToPts.cpp
Go to the documentation of this file.
1 ////////////////////////////////////////////////////////////////////////////////
2 //
3 // File: ProcessInterpPtsToPts.cpp
4 //
5 // For more information, please see: http://www.nektar.info/
6 //
7 // The MIT License
8 //
9 // Copyright (c) 2006 Division of Applied Mathematics, Brown University (USA),
10 // Department of Aeronautics, Imperial College London (UK), and Scientific
11 // Computing and Imaging Institute, University of Utah (USA).
12 //
13 // Permission is hereby granted, free of charge, to any person obtaining a
14 // copy of this software and associated documentation files (the "Software"),
15 // to deal in the Software without restriction, including without limitation
16 // the rights to use, copy, modify, merge, publish, distribute, sublicense,
17 // and/or sell copies of the Software, and to permit persons to whom the
18 // Software is furnished to do so, subject to the following conditions:
19 //
20 // The above copyright notice and this permission notice shall be included
21 // in all copies or substantial portions of the Software.
22 //
23 // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
24 // OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
25 // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
26 // THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
27 // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
28 // FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
29 // DEALINGS IN THE SOFTWARE.
30 //
31 // Description: Interpolate field to a series of specified points.
32 //
33 ////////////////////////////////////////////////////////////////////////////////
34 
35 #include <iostream>
36 #include <string>
37 using namespace std;
38 
39 #include <boost/core/ignore_unused.hpp>
40 #include <boost/lexical_cast.hpp>
41 #include <boost/math/special_functions/fpclassify.hpp>
42 
49 
50 #include "ProcessInterpPtsToPts.h"
51 
52 namespace Nektar
53 {
54 namespace FieldUtils
55 {
56 
57 ModuleKey ProcessInterpPtsToPts::className =
59  ModuleKey(eProcessModule, "interpptstopts"),
60  ProcessInterpPtsToPts::create,
61  "Interpolates a set of points to another, requires fromfld and "
62  "fromxml to be defined, a line, plane or block of points can be "
63  "defined");
64 
65 ProcessInterpPtsToPts::ProcessInterpPtsToPts(FieldSharedPtr f)
66  : ProcessModule(f)
67 {
68  m_config["topts"] =
69  ConfigOption(false, "NotSet", "Pts file to which interpolate field");
70  m_config["line"] = ConfigOption(false, "NotSet",
71  "Specify a line of N points using "
72  "line=N,x0,y0,z0,z1,y1,z1");
73  m_config["plane"] =
74  ConfigOption(false, "NotSet",
75  "Specify a plane of N1 x N2 points using "
76  "plane=N1,N2,x0,y0,z0,z1,y1,z1,x2,y2,z2,x3,y3,z3");
77  m_config["box"] =
78  ConfigOption(false, "NotSet",
79  "Specify a rectangular box of N1 x N2 x N3 points "
80  "using a box of points limited by box="
81  "N1,N2,N3,xmin,xmax,ymin,ymax,zmin,zmax");
82 
83  m_config["clamptolowervalue"] =
84  ConfigOption(false, "-10000000", "Lower bound for interpolation value");
85  m_config["clamptouppervalue"] =
86  ConfigOption(false, "10000000", "Upper bound for interpolation value");
87  m_config["defaultvalue"] =
88  ConfigOption(false, "0", "Default value if point is outside domain");
89 
90  m_config["cp"] =
91  ConfigOption(false, "NotSet",
92  "Parameters p0 and q to determine pressure coefficients");
93 }
94 
96 {
97 }
98 
99 void ProcessInterpPtsToPts::v_Process(po::variables_map &vm)
100 {
101  ASSERTL0(m_f->m_fieldPts != LibUtilities::NullPtsField,
102  "Should have a PtsField for ProcessInterpPtsToPts.");
103  ASSERTL0(m_f->m_comm->GetSpaceComm()->GetSize() == 1,
104  "ProcessInterpPtsToPts not implemented in parallel.");
105 
106  // Move m_f->m_fieldPts
107  LibUtilities::PtsFieldSharedPtr oldPts = m_f->m_fieldPts;
108  m_f->m_fieldPts = LibUtilities::NullPtsField;
109 
110  // Create new fieldPts
111  CreateFieldPts(vm);
112 
113  int nfields = m_f->m_variables.size();
114  for (int j = 0; j < nfields; ++j)
115  {
116  Array<OneD, NekDouble> newPts(m_f->m_fieldPts->GetNpoints());
117  m_f->m_fieldPts->AddField(newPts, m_f->m_variables[j]);
118  }
119 
120  NekDouble clamp_low = m_config["clamptolowervalue"].as<NekDouble>();
121  NekDouble clamp_up = m_config["clamptouppervalue"].as<NekDouble>();
122  NekDouble def_value = m_config["defaultvalue"].as<NekDouble>();
123 
124  InterpolatePtsToPts(oldPts, m_f->m_fieldPts, clamp_low, clamp_up,
125  def_value);
126 
127  if (!boost::iequals(m_config["cp"].as<string>(), "NotSet"))
128  {
129  calcCp0();
130  }
131 }
132 
133 void ProcessInterpPtsToPts::CreateFieldPts(po::variables_map &vm)
134 {
135  boost::ignore_unused(vm);
136 
137  int rank = m_f->m_comm->GetSpaceComm()->GetRank();
138  int nprocs = m_f->m_comm->GetSpaceComm()->GetSize();
139  // Check for command line point specification
140  if (m_config["topts"].as<string>().compare("NotSet") != 0)
141  {
142  string inFile = m_config["topts"].as<string>();
143 
144  if (boost::filesystem::path(inFile).extension() == ".pts")
145  {
148  m_f->m_comm);
149 
150  ptsIO->Import(inFile, m_f->m_fieldPts);
151  }
152  else if (boost::filesystem::path(inFile).extension() == ".csv")
153  {
156  m_f->m_comm);
157 
158  csvIO->Import(inFile, m_f->m_fieldPts);
159  }
160  else
161  {
162  ASSERTL0(false, "unknown topts file type");
163  }
164  }
165  else if (m_config["line"].as<string>().compare("NotSet") != 0)
166  {
167  vector<NekDouble> values;
168  ASSERTL0(
169  ParseUtils::GenerateVector(m_config["line"].as<string>(), values),
170  "Failed to interpret line string");
171 
172  ASSERTL0(values.size() > 2, "line string should contain 2*Dim+1 values "
173  "N,x0,y0,z0,x1,y1,z1");
174 
175  double tmp;
176  ASSERTL0(std::modf(values[0], &tmp) == 0.0, "N is not an integer");
177  ASSERTL0(values[0] > 1, "N is not a valid number");
178 
179  int dim = (values.size() - 1) / 2;
180  int npts = values[0];
181 
182  // Information for partitioning
183  int ptsPerProc = npts / nprocs;
184  int extraPts = (rank < nprocs - 1) ? 0 : npts % nprocs;
185  int locPts = ptsPerProc + extraPts;
186  int start = rank * ptsPerProc;
187  int end = start + locPts;
188 
190  Array<OneD, NekDouble> delta(dim);
191  for (int i = 0; i < dim; ++i)
192  {
193  pts[i] = Array<OneD, NekDouble>(locPts);
194  delta[i] = (values[dim + i + 1] - values[i + 1]) / (npts - 1);
195  }
196 
197  for (int i = 0, cntLoc = 0; i < npts; ++i)
198  {
199  if (i >= start && i < end)
200  {
201  for (int n = 0; n < dim; ++n)
202  {
203  pts[n][cntLoc] = values[n + 1] + i * delta[n];
204  }
205  ++cntLoc;
206  }
207  }
208 
209  vector<size_t> ppe;
210  ppe.push_back(npts);
211  m_f->m_fieldPts =
213  m_f->m_fieldPts->SetPtsType(LibUtilities::ePtsLine);
214  m_f->m_fieldPts->SetPointsPerEdge(ppe);
215  }
216  else if (m_config["plane"].as<string>().compare("NotSet") != 0)
217  {
218  vector<NekDouble> values;
219  ASSERTL0(
220  ParseUtils::GenerateVector(m_config["plane"].as<string>(), values),
221  "Failed to interpret plane string");
222 
223  ASSERTL0(values.size() > 9,
224  "plane string should contain 4 Dim+2 values "
225  "N1,N2,x0,y0,z0,x1,y1,z1,x2,y2,z2,x3,y3,z3");
226 
227  double tmp;
228  ASSERTL0(std::modf(values[0], &tmp) == 0.0, "N1 is not an integer");
229  ASSERTL0(std::modf(values[1], &tmp) == 0.0, "N2 is not an integer");
230 
231  ASSERTL0(values[0] > 1, "N1 is not a valid number");
232  ASSERTL0(values[1] > 1, "N2 is not a valid number");
233 
234  int dim = (values.size() - 2) / 4;
235 
236  Array<OneD, int> npts(2);
237  npts[0] = values[0];
238  npts[1] = values[1];
239 
240  int totpts = npts[0] * npts[1];
241 
242  // Information for partitioning
243  int ptsPerProc = totpts / nprocs;
244  int extraPts = (rank < nprocs - 1) ? 0 : totpts % nprocs;
245  int locPts = ptsPerProc + extraPts;
246  int start = rank * ptsPerProc;
247  int end = start + locPts;
248 
250  Array<OneD, NekDouble> delta1(dim);
251  Array<OneD, NekDouble> delta2(dim);
252  for (int i = 0; i < dim; ++i)
253  {
254  pts[i] = Array<OneD, NekDouble>(locPts);
255  delta1[i] = (values[2 + 1 * dim + i] - values[2 + 0 * dim + i]) /
256  (npts[0] - 1);
257  delta2[i] = (values[2 + 2 * dim + i] - values[2 + 3 * dim + i]) /
258  (npts[0] - 1);
259  }
260 
261  for (int j = 0, cnt = 0, cntLoc = 0; j < npts[1]; ++j)
262  {
263  for (int i = 0; i < npts[0]; ++i, ++cnt)
264  {
265  if (cnt >= start && cnt < end)
266  {
267  for (int n = 0; n < dim; ++n)
268  {
269  pts[n][cntLoc] =
270  (values[2 + n] + i * delta1[n]) *
271  (1.0 - j / ((NekDouble)(npts[1] - 1))) +
272  (values[2 + 3 * dim + n] + i * delta2[n]) *
273  (j / ((NekDouble)(npts[1] - 1)));
274  }
275  ++cntLoc;
276  }
277  }
278  }
279 
280  vector<size_t> ppe;
281  ppe.push_back(npts[0]);
282  ppe.push_back(npts[1]);
283  m_f->m_fieldPts =
285  m_f->m_fieldPts->SetPtsType(LibUtilities::ePtsPlane);
286  m_f->m_fieldPts->SetPointsPerEdge(ppe);
287  }
288  else if (m_config["box"].as<string>().compare("NotSet") != 0)
289  {
290  vector<NekDouble> values;
291  ASSERTL0(
292  ParseUtils::GenerateVector(m_config["box"].as<string>(), values),
293  "Failed to interpret box string");
294 
295  ASSERTL0(values.size() == 9, "box string should contain 9 values "
296  "N1,N2,N3,xmin,xmax,ymin,ymax,zmin,zmax");
297 
298  int dim = 3;
299  Array<OneD, int> npts(3);
300  npts[0] = values[0];
301  npts[1] = values[1];
302  npts[2] = values[2];
303 
304  int totpts = npts[0] * npts[1] * npts[2];
305 
307  Array<OneD, NekDouble> delta(dim);
308 
309  // Information for partitioning
310  int ptsPerProc = totpts / nprocs;
311  int extraPts = (rank < nprocs - 1) ? 0 : totpts % nprocs;
312  int locPts = ptsPerProc + extraPts;
313  int start = rank * ptsPerProc;
314  int end = start + locPts;
315 
316  for (int i = 0; i < dim; ++i)
317  {
318  pts[i] = Array<OneD, NekDouble>(locPts);
319  delta[i] = (values[4 + 2 * i] - values[3 + 2 * i]) / (npts[i] - 1);
320  }
321 
322  for (int k = 0, cnt = 0, cntLoc = 0; k < npts[2]; ++k)
323  {
324  for (int j = 0; j < npts[1]; ++j)
325  {
326  for (int i = 0; i < npts[0]; ++i, ++cnt)
327  {
328  if (cnt >= start && cnt < end)
329  {
330  pts[0][cntLoc] = values[3] + i * delta[0];
331  pts[1][cntLoc] = values[5] + j * delta[1];
332  pts[2][cntLoc] = values[7] + k * delta[2];
333  ++cntLoc;
334  }
335  }
336  }
337  }
338 
339  vector<size_t> ppe;
340  ppe.push_back(npts[0]);
341  ppe.push_back(npts[1]);
342  ppe.push_back(npts[2]);
343  m_f->m_fieldPts =
345  m_f->m_fieldPts->SetPtsType(LibUtilities::ePtsBox);
346  m_f->m_fieldPts->SetPointsPerEdge(ppe);
347  vector<NekDouble> boxdim;
348  boxdim.assign(&values[3], &values[3] + 6);
349  m_f->m_fieldPts->SetBoxSize(boxdim);
350  }
351  else
352  {
353  ASSERTL0(false,
354  "ProcessInterpPtsToPts requires line, plane or box option.");
355  }
356 }
357 
360  LibUtilities::PtsFieldSharedPtr &toPts, NekDouble clamp_low,
361  NekDouble clamp_up, NekDouble def_value)
362 {
363  boost::ignore_unused(def_value);
364 
365  ASSERTL0(toPts->GetNFields() >= fromPts->GetNFields(),
366  "ptField has too few fields");
367 
368  int nfields = fromPts->GetNFields();
369 
371  if (m_f->m_comm->GetRank() == 0)
372  {
374  this);
375  }
376  interp.Interpolate(fromPts, toPts);
377  if (m_f->m_comm->GetRank() == 0)
378  {
379  cout << endl;
380  }
381 
382  for (int f = 0; f < nfields; ++f)
383  {
384  for (int i = 0; i < toPts->GetNpoints(); ++i)
385  {
386  if (toPts->GetPointVal(f, i) > clamp_up)
387  {
388  toPts->SetPointVal(f, i, clamp_up);
389  }
390  else if (toPts->GetPointVal(f, i) < clamp_low)
391  {
392  toPts->SetPointVal(f, i, clamp_low);
393  }
394  }
395  }
396 }
397 
399 {
400  LibUtilities::PtsFieldSharedPtr pts = m_f->m_fieldPts;
401  int dim = pts->GetDim();
402  int nq1 = pts->GetNpoints();
403  int r, f;
404  int pfield = -1;
405  NekDouble p0, qinv;
406  vector<int> velid;
407 
408  vector<NekDouble> values;
409  ASSERTL0(ParseUtils::GenerateVector(m_config["cp"].as<string>(), values),
410  "Failed to interpret cp string");
411 
412  ASSERTL0(values.size() == 2, "cp string should contain 2 values "
413  "p0 and q (=1/2 rho u^2)");
414 
415  p0 = values[0];
416  qinv = 1.0 / values[1];
417 
418  for (int i = 0; i < pts->GetNFields(); ++i)
419  {
420  if (boost::iequals(pts->GetFieldName(i), "p"))
421  {
422  pfield = i;
423  }
424 
425  if (boost::iequals(pts->GetFieldName(i), "u") ||
426  boost::iequals(pts->GetFieldName(i), "v") ||
427  boost::iequals(pts->GetFieldName(i), "w"))
428  {
429  velid.push_back(i);
430  }
431  }
432 
433  if (pfield != -1)
434  {
435  if (!velid.size())
436  {
437  WARNINGL0(false, "Did not find velocity components for Cp0");
438  }
439  }
440  else
441  {
442  WARNINGL0(false, "Failed to find 'p' field to determine cp0");
443  }
444 
445  // Allocate data storage
447 
448  for (f = 0; f < 2; ++f)
449  {
450  data[f] = Array<OneD, NekDouble>(nq1, 0.0);
451  }
452 
453  for (r = 0; r < nq1; r++)
454  {
455  if (pfield != -1) // calculate cp
456  {
457  data[0][r] = qinv * (pts->GetPointVal(dim + pfield, r) - p0);
458 
459  if (velid.size()) // calculate cp0
460  {
461  NekDouble q = 0;
462  for (int i = 0; i < velid.size(); ++i)
463  {
464  q += 0.5 * pts->GetPointVal(dim + velid[i], r) *
465  pts->GetPointVal(dim + velid[i], r);
466  }
467  data[1][r] =
468  qinv * (pts->GetPointVal(dim + pfield, r) + q - p0);
469  }
470  }
471  }
472 
473  if (pfield != -1)
474  {
475  pts->AddField(data[0], "Cp");
476  m_f->m_variables.push_back("Cp");
477  if (velid.size())
478  {
479  pts->AddField(data[1], "Cp0");
480  m_f->m_variables.push_back("Cp0");
481  }
482  }
483 }
484 
486  const int goal) const
487 {
488  LibUtilities::PrintProgressbar(position, goal, "Interpolating");
489 }
490 } // namespace FieldUtils
491 } // namespace Nektar
#define ASSERTL0(condition, msg)
Definition: ErrorUtil.hpp:215
#define WARNINGL0(condition, msg)
Definition: ErrorUtil.hpp:222
A class that contains algorithms for interpolation between pts fields, expansions and different meshe...
FIELD_UTILS_EXPORT void Interpolate(const T expInField, T &expOutField, NekDouble def_value=0.0)
Interpolate from an expansion to an expansion.
FieldSharedPtr m_f
Field object.
Definition: Module.h:234
std::map< std::string, ConfigOption > m_config
List of configuration values.
Definition: Module.h:263
void InterpolatePtsToPts(LibUtilities::PtsFieldSharedPtr &fromPts, LibUtilities::PtsFieldSharedPtr &toPts, NekDouble clamp_low, NekDouble clamp_up, NekDouble def_value)
void PrintProgressbar(const int position, const int goal) const
virtual void v_Process(po::variables_map &vm) override
Write mesh to output file.
Abstract base class for processing modules.
Definition: Module.h:292
void SetProgressCallback(FuncPointerT func, ObjectPointerT obj)
sets a callback funtion which gets called every time the interpolation progresses
tKey RegisterCreatorFunction(tKey idKey, CreatorFunction classCreator, std::string pDesc="")
Register a class with the factory.
Definition: NekFactory.hpp:198
static std::shared_ptr< DataType > AllocateSharedPtr(const Args &...args)
Allocate a shared pointer from the memory pool.
static bool GenerateVector(const std::string &str, std::vector< T > &out)
Takes a comma-separated string and converts it to entries in a vector.
Definition: ParseUtils.cpp:131
std::shared_ptr< Field > FieldSharedPtr
Definition: Field.hpp:991
std::pair< ModuleType, std::string > ModuleKey
Definition: Module.h:317
ModuleFactory & GetModuleFactory()
Definition: Module.cpp:49
int PrintProgressbar(const int position, const int goal, const std::string message, int lastprogress=-1)
Prints a progressbar.
Definition: Progressbar.hpp:67
std::shared_ptr< PtsField > PtsFieldSharedPtr
Definition: PtsField.h:190
std::shared_ptr< CsvIO > CsvIOSharedPtr
Definition: CsvIO.h:80
static PtsFieldSharedPtr NullPtsField
Definition: PtsField.h:191
std::shared_ptr< PtsIO > PtsIOSharedPtr
Definition: PtsIO.h:96
The above copyright notice and this permission notice shall be included.
Definition: CoupledSolver.h:2
double NekDouble
Represents a command-line configuration option.
Definition: Module.h:131