Nektar++
ProcessL2Criterion.cpp
Go to the documentation of this file.
1 ////////////////////////////////////////////////////////////////////////////////
2 //
3 // File: ProcessL2Criterion.cpp
4 //
5 // For more information, please see: http://www.nektar.info/
6 //
7 // The MIT License
8 //
9 // Copyright (c) 2006 Division of Applied Mathematics, Brown University (USA),
10 // Department of Aeronautics, Imperial College London (UK), and Scientific
11 // Computing and Imaging Institute, University of Utah (USA).
12 //
13 // Permission is hereby granted, free of charge, to any person obtaining a
14 // copy of this software and associated documentation files (the "Software"),
15 // to deal in the Software without restriction, including without limitation
16 // the rights to use, copy, modify, merge, publish, distribute, sublicense,
17 // and/or sell copies of the Software, and to permit persons to whom the
18 // Software is furnished to do so, subject to the following conditions:
19 //
20 // The above copyright notice and this permission notice shall be included
21 // in all copies or substantial portions of the Software.
22 //
23 // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
24 // OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
25 // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
26 // THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
27 // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
28 // FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
29 // DEALINGS IN THE SOFTWARE.
30 //
31 // Description: Computes Lambda 2 Criterion field.
32 //
33 ////////////////////////////////////////////////////////////////////////////////
34 
35 #include <iostream>
36 #include <string>
37 using namespace std;
38 
39 #include <boost/core/ignore_unused.hpp>
40 
42 
43 #include "ProcessL2Criterion.h"
44 
45 namespace Nektar
46 {
47 namespace FieldUtils
48 {
49 
50 ModuleKey ProcessL2Criterion::className =
52  ModuleKey(eProcessModule, "L2Criterion"), ProcessL2Criterion::create,
53  "Computes Lambda 2 Criterion.");
54 
55 ProcessL2Criterion::ProcessL2Criterion(FieldSharedPtr f) : ProcessModule(f)
56 {
57 }
58 
60 {
61 }
62 
63 /**
64  * @brief Calculates eigenvalues of a 3x3 Symmetric matrix.
65  *
66  * @param d1, d2, d3 - matrix diagonal entries at [0,0], [1,1] and [2,2]
67  * @param a - matrix value at [0,1] and [1,0]
68  * @param b - matrix value at [0,2] and [2,0]
69  * @param c - matrix value at [1,2] and [2,1]
70  * @param l1, l2, l3 the computed eigenvalues, ordered l3 >= l2 >= l1
71  */
73  NekDouble b, NekDouble c, NekDouble &l1, NekDouble &l2,
74  NekDouble &l3)
75 {
76  NekDouble p = a * a + b * b + c * c;
77  if (p == 0)
78  {
79  l1 = d1;
80  l2 = d2;
81  l3 = d3;
82  if (l1 > l3)
83  {
84  swap(l1, l3);
85  }
86  if (l1 > l2)
87  {
88  swap(l1, l2);
89  }
90  if (l2 > l3)
91  {
92  swap(l2, l3);
93  }
94  }
95  else
96  {
97  NekDouble q = (d1 + d2 + d3) / 3.0;
98  p = (d1 - q) * (d1 - q) + (d2 - q) * (d2 - q) + (d3 - q) * (d3 - q) +
99  2.0 * p;
100  p = sqrt(p / 6.0);
101  NekDouble r =
102  -0.5 *
103  (a * a * d3 - a * a * q - 2.0 * a * b * c + b * b * d2 - b * b * q +
104  c * c * d1 - c * c * q - d1 * d2 * d3 + d1 * d2 * q + d1 * d3 * q -
105  d1 * q * q + d2 * d3 * q - d2 * q * q - d3 * q * q + q * q * q) /
106  (p * p * p);
107 
108  NekDouble phi = 0;
109  if (r <= -1)
110  {
111  phi = M_PI / 3.0;
112  }
113  else if (r >= 1)
114  {
115  phi = 0.0;
116  }
117  else
118  {
119  phi = acos(r) / 3.0;
120  }
121 
122  // the eigenvalues satisfy eig3 >= eig2 >= eig1
123  l3 = q + 2.0 * p * cos(phi);
124  l1 = q + 2.0 * p * cos(phi + (2.0 * M_PI / 3.0));
125  // since trace(A) = eig1 + eig2 + eig3
126  l2 = 3.0 * q - l1 - l3;
127  }
128 }
129 
130 void ProcessL2Criterion::v_Process(po::variables_map &vm)
131 {
132  m_f->SetUpExp(vm);
133 
134  auto nfields = m_f->m_variables.size();
135  m_f->m_variables.push_back("L2");
136 
137  // Skip in case of empty partition
138  if (m_f->m_exp[0]->GetNumElmts() == 0)
139  {
140  return;
141  }
142 
143  int i, s;
144  int expdim = m_f->m_graph->GetMeshDimension();
145  int spacedim = expdim + (m_f->m_numHomogeneousDir);
146 
147  ASSERTL0(
148  spacedim == 3,
149  "ProcessL2Criterion must be computed for a 3D (or quasi-3D) case.");
150 
151  int npoints = m_f->m_exp[0]->GetNpoints();
152 
153  Array<OneD, Array<OneD, NekDouble>> grad(spacedim * spacedim);
154 
155  // Will store the Lambdas
156  NekDouble a00, a11, a22, a01, a02, a12;
157  NekDouble t1, t2, t3, t4, t5, t6, t7, t8, t10, t11, t13, t14, t15;
158  NekDouble outfield1, outfield3;
159  Array<OneD, NekDouble> outfield2(npoints);
160 
161  int nstrips;
162  m_f->m_session->LoadParameter("Strip_Z", nstrips, 1);
163 
164  for (i = 0; i < spacedim * spacedim; ++i)
165  {
166  grad[i] = Array<OneD, NekDouble>(npoints);
167  }
168 
170 
171  for (s = 0; s < nstrips; ++s) // homogeneous strip varient
172  {
173  Exp = m_f->AppendExpList(m_f->m_numHomogeneousDir);
174  auto it = m_f->m_exp.begin() + s * (nfields + 1) + nfields;
175  m_f->m_exp.insert(it, Exp);
176  }
177 
178  for (s = 0; s < nstrips; ++s) // homogeneous strip varient
179  {
180  for (i = 0; i < spacedim; ++i)
181  {
182  m_f->m_exp[s * nfields + i]->PhysDeriv(
183  m_f->m_exp[s * nfields + i]->GetPhys(), grad[i * spacedim],
184  grad[i * spacedim + 1], grad[i * spacedim + 2]);
185  }
186 
187  /*
188  * For each node calculate the S^2+W^2 tensor
189  * where S and W are the symmetric and the skew-symmetric
190  * parts of the velocity gradient tensor D=grad(u),
191  * S=0.5(D+transpose(D)) and W=0.5((D-transpose(D)))
192  */
193  for (int j = 0; j < npoints; ++j)
194  {
195  // diff(u,y) + diff(v,x);
196  t1 = grad[0 * spacedim + 1][j] + grad[1 * spacedim + 0][j];
197  // diff(u,z) + diff(w,x);
198  t2 = grad[0 * spacedim + 2][j] + grad[2 * spacedim + 0][j];
199  // diff(u,y) - diff(v,x);
200  t3 = grad[0 * spacedim + 1][j] - grad[1 * spacedim + 0][j];
201  // diff(u,z) - diff(w,x);
202  t4 = grad[0 * spacedim + 2][j] - grad[2 * spacedim + 0][j];
203 
204  t5 = t2 * t2;
205  t6 = t4 * t4;
206  t7 = t3 * t3;
207  t8 = t1 * t1;
208 
209  // diff(w,y) + diff(v,z);
210  t10 = grad[2 * spacedim + 1][j] + grad[1 * spacedim + 2][j];
211  // diff(w,y) - diff(v,z);
212  t11 = grad[2 * spacedim + 1][j] - grad[1 * spacedim + 2][j];
213 
214  t13 = 0.25 * (t10 * t2 + t11 * t4) +
215  0.5 * t1 *
216  (grad[0 * spacedim + 0][j] + grad[1 * spacedim + 1][j]);
217  t14 = 0.5 * t2 *
218  (grad[0 * spacedim + 0][j] + grad[2 * spacedim + 2][j]) +
219  0.25 * (t1 * t10 - t11 * t3);
220  t15 = t10 * t10;
221  t11 = t11 * t11;
222  t1 = 0.5 * t10 *
223  (grad[1 * spacedim + 1][j] + grad[2 * spacedim + 2][j]) -
224  0.25 * (-t1 * t2 + t3 * t4);
225 
226  a00 = 0.25 * (t5 - t6 - t7 + t8) +
227  grad[0 * spacedim + 0][j] * grad[0 * spacedim + 0][j];
228  a01 = t13;
229  a02 = t14;
230  a11 = 0.25 * (-t7 + t8 + t15 - t11) +
231  grad[1 * spacedim + 1][j] * grad[1 * spacedim + 1][j];
232  a12 = t1;
233  a22 = 0.25 * (t5 - t6 + t15 - t11) +
234  grad[2 * spacedim + 2][j] * grad[2 * spacedim + 2][j];
235 
236  // Compute the eigenvalues of a symmetric 3x3 matrix
237  MatSymEVals(a00, a11, a22, a01, a02, a12, outfield1, outfield2[j],
238  outfield3);
239  }
240 
241  int fid = s * (nfields + 1) + nfields;
242  Vmath::Vcopy(npoints, outfield2, 1, m_f->m_exp[fid]->UpdatePhys(), 1);
243  m_f->m_exp[fid]->FwdTransLocalElmt(outfield2,
244  m_f->m_exp[fid]->UpdateCoeffs());
245  }
246 }
247 } // namespace FieldUtils
248 } // namespace Nektar
#define ASSERTL0(condition, msg)
Definition: ErrorUtil.hpp:215
FieldSharedPtr m_f
Field object.
Definition: Module.h:234
virtual void v_Process(po::variables_map &vm) override
Abstract base class for processing modules.
Definition: Module.h:292
tKey RegisterCreatorFunction(tKey idKey, CreatorFunction classCreator, std::string pDesc="")
Register a class with the factory.
Definition: NekFactory.hpp:198
void MatSymEVals(NekDouble d1, NekDouble d2, NekDouble d3, NekDouble a, NekDouble b, NekDouble c, NekDouble &l1, NekDouble &l2, NekDouble &l3)
Calculates eigenvalues of a 3x3 Symmetric matrix.
std::shared_ptr< Field > FieldSharedPtr
Definition: Field.hpp:991
std::pair< ModuleType, std::string > ModuleKey
Definition: Module.h:317
ModuleFactory & GetModuleFactory()
Definition: Module.cpp:49
std::shared_ptr< ExpList > ExpListSharedPtr
Shared pointer to an ExpList object.
The above copyright notice and this permission notice shall be included.
Definition: CoupledSolver.h:2
double NekDouble
void Vcopy(int n, const T *x, const int incx, T *y, const int incy)
Definition: Vmath.cpp:1255
scalarT< T > sqrt(scalarT< T > in)
Definition: scalar.hpp:294