Nektar++
ProcessQualityMetric.cpp
Go to the documentation of this file.
1 ////////////////////////////////////////////////////////////////////////////////
2 //
3 // File: ProcessQualityMetric.cpp
4 //
5 // For more information, please see: http://www.nektar.info/
6 //
7 // The MIT License
8 //
9 // Copyright (c) 2006 Division of Applied Mathematics, Brown University (USA),
10 // Department of Aeronautics, Imperial College London (UK), and Scientific
11 // Computing and Imaging Institute, University of Utah (USA).
12 //
13 // Permission is hereby granted, free of charge, to any person obtaining a
14 // copy of this software and associated documentation files (the "Software"),
15 // to deal in the Software without restriction, including without limitation
16 // the rights to use, copy, modify, merge, publish, distribute, sublicense,
17 // and/or sell copies of the Software, and to permit persons to whom the
18 // Software is furnished to do so, subject to the following conditions:
19 //
20 // The above copyright notice and this permission notice shall be included
21 // in all copies or substantial portions of the Software.
22 //
23 // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
24 // OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
25 // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
26 // THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
27 // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
28 // FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
29 // DEALINGS IN THE SOFTWARE.
30 //
31 // Description: Compute quality metric of Roca et al.
32 //
33 ////////////////////////////////////////////////////////////////////////////////
34 
35 #include <iostream>
36 #include <string>
37 using namespace std;
38 
39 #include <boost/core/ignore_unused.hpp>
40 
43 #include <StdRegions/StdHexExp.h>
44 #include <StdRegions/StdPrismExp.h>
45 #include <StdRegions/StdQuadExp.h>
46 #include <StdRegions/StdTetExp.h>
47 #include <StdRegions/StdTriExp.h>
48 
49 #include "ProcessQualityMetric.h"
50 
51 namespace Nektar
52 {
53 namespace FieldUtils
54 {
55 
56 ModuleKey ProcessQualityMetric::className =
58  ModuleKey(eProcessModule, "qualitymetric"),
59  ProcessQualityMetric::create, "add quality metric to field.");
60 
61 ProcessQualityMetric::ProcessQualityMetric(FieldSharedPtr f) : ProcessModule(f)
62 {
63  m_config["scaled"] = ConfigOption(true, "0", "use scaled jacobian instead");
64 }
65 
67 {
68 }
69 
70 void ProcessQualityMetric::v_Process(po::variables_map &vm)
71 {
72  m_f->SetUpExp(vm);
73 
74  int nfields = m_f->m_variables.size();
75  m_f->m_variables.push_back("qualitymetric");
76  // Skip in case of empty partition
77  if (m_f->m_exp[0]->GetNumElmts() == 0)
78  {
79  return;
80  }
81 
82  int NumHomogeneousDir = m_f->m_numHomogeneousDir;
84 
85  if (nfields)
86  {
87  m_f->m_exp.resize(nfields + 1);
88  exp = m_f->AppendExpList(NumHomogeneousDir);
89 
90  m_f->m_exp[nfields] = exp;
91  }
92  else
93  {
94  exp = m_f->m_exp[0];
95  }
96 
97  Array<OneD, NekDouble> &phys = exp->UpdatePhys();
98  Array<OneD, NekDouble> &coeffs = exp->UpdateCoeffs();
99 
100  for (int i = 0; i < exp->GetExpSize(); ++i)
101  {
102  // copy Jacobian into field
103  LocalRegions::ExpansionSharedPtr Elmt = exp->GetExp(i);
104  int offset = exp->GetPhys_Offset(i);
105  Array<OneD, NekDouble> q = GetQ(Elmt, m_config["scaled"].as<bool>());
106  Array<OneD, NekDouble> out = phys + offset;
107 
108  ASSERTL0(q.size() == Elmt->GetTotPoints(), "number of points mismatch");
109  Vmath::Vcopy(q.size(), q, 1, out, 1);
110  }
111 
112  exp->FwdTransLocalElmt(phys, coeffs);
113 }
114 
117 {
118  vector<DNekMat> ret;
119 
120  if (geom->GetShapeType() == LibUtilities::eQuadrilateral)
121  {
122  vector<Array<OneD, NekDouble>> xy;
123  for (int i = 0; i < geom->GetNumVerts(); i++)
124  {
126  SpatialDomains::PointGeomSharedPtr p = geom->GetVertex(i);
127  p->GetCoords(loc);
128  xy.push_back(loc);
129  }
130 
132  Array<OneD, NekDouble> u = b[0]->GetZ();
133  Array<OneD, NekDouble> v = b[1]->GetZ();
134 
135  for (int j = 0; j < b[1]->GetNumPoints(); j++)
136  {
137  for (int i = 0; i < b[0]->GetNumPoints(); i++)
138  {
139  NekDouble a1 = 0.5 * (1.0 - u[i]), a2 = 0.5 * (1.0 + u[i]);
140  NekDouble b1 = 0.5 * (1.0 - v[j]), b2 = 0.5 * (1.0 + v[j]);
141  DNekMat dxdz(2, 2, 1.0, eFULL);
142 
143  dxdz(0, 0) = 0.5 * (-b1 * xy[0][0] + b1 * xy[1][0] +
144  b2 * xy[2][0] - b2 * xy[3][0]);
145  dxdz(1, 0) = 0.5 * (-b1 * xy[0][1] + b1 * xy[1][1] +
146  b2 * xy[2][1] - b2 * xy[3][1]);
147 
148  dxdz(0, 1) = 0.5 * (-a1 * xy[0][0] - a2 * xy[1][0] +
149  a2 * xy[2][0] + a1 * xy[3][0]);
150  dxdz(1, 1) = 0.5 * (-a1 * xy[0][1] - a2 * xy[1][1] +
151  a2 * xy[2][1] + a1 * xy[3][1]);
152 
153  dxdz.Invert();
154  ret.push_back(dxdz);
155  }
156  }
157  }
158  else if (geom->GetShapeType() == LibUtilities::eTriangle)
159  {
160  vector<Array<OneD, NekDouble>> xy;
161  for (int i = 0; i < geom->GetNumVerts(); i++)
162  {
164  SpatialDomains::PointGeomSharedPtr p = geom->GetVertex(i);
165  p->GetCoords(loc);
166  xy.push_back(loc);
167  }
168 
170  Array<OneD, NekDouble> u = b[0]->GetZ();
171  Array<OneD, NekDouble> v = b[1]->GetZ();
172 
173  for (int i = 0; i < b[0]->GetNumPoints(); i++)
174  {
175  for (int j = 0; j < b[1]->GetNumPoints(); j++)
176  {
177  DNekMat dxdz(2, 2, 1.0, eFULL);
178  dxdz(0, 0) = -xy[0][0] / 2.0 + xy[1][0] / 2.0;
179 
180  dxdz(0, 1) = -xy[0][0] / 2.0 + xy[2][0] / 2.0;
181 
182  dxdz(1, 0) = -xy[0][1] / 2.0 + xy[1][1] / 2.0;
183 
184  dxdz(1, 1) = -xy[0][1] / 2.0 + xy[2][1] / 2.0;
185 
186  dxdz.Invert();
187  ret.push_back(dxdz);
188  }
189  }
190  }
191  else if (geom->GetShapeType() == LibUtilities::eTetrahedron)
192  {
193  vector<Array<OneD, NekDouble>> xyz;
194  for (int i = 0; i < geom->GetNumVerts(); i++)
195  {
197  SpatialDomains::PointGeomSharedPtr p = geom->GetVertex(i);
198  p->GetCoords(loc);
199  xyz.push_back(loc);
200  }
201 
203  Array<OneD, NekDouble> u = b[0]->GetZ();
204  Array<OneD, NekDouble> v = b[1]->GetZ();
205  Array<OneD, NekDouble> z = b[2]->GetZ();
206 
207  for (int i = 0; i < b[0]->GetNumPoints(); i++)
208  {
209  for (int j = 0; j < b[1]->GetNumPoints(); j++)
210  {
211  for (int k = 0; k < b[2]->GetNumPoints(); k++)
212  {
213  DNekMat dxdz(3, 3, 1.0, eFULL);
214  dxdz(0, 0) = -xyz[0][0] / 2.0 + xyz[1][0] / 2.0;
215 
216  dxdz(0, 1) = -xyz[0][0] / 2.0 + xyz[2][0] / 2.0;
217 
218  dxdz(0, 2) = -xyz[0][0] / 2.0 + xyz[3][0] / 2.0;
219 
220  dxdz(1, 0) = -xyz[0][1] / 2.0 + xyz[1][1] / 2.0;
221 
222  dxdz(1, 1) = -xyz[0][1] / 2.0 + xyz[2][1] / 2.0;
223 
224  dxdz(1, 2) = -xyz[0][1] / 2.0 + xyz[3][1] / 2.0;
225 
226  dxdz(2, 0) = -xyz[0][2] / 2.0 + xyz[1][2] / 2.0;
227 
228  dxdz(2, 1) = -xyz[0][2] / 2.0 + xyz[2][2] / 2.0;
229 
230  dxdz(2, 2) = -xyz[0][2] / 2.0 + xyz[3][2] / 2.0;
231 
232  dxdz.Invert();
233  ret.push_back(dxdz);
234  }
235  }
236  }
237  }
238  else if (geom->GetShapeType() == LibUtilities::ePrism)
239  {
240  vector<Array<OneD, NekDouble>> xyz;
241  for (int i = 0; i < geom->GetNumVerts(); i++)
242  {
244  SpatialDomains::PointGeomSharedPtr p = geom->GetVertex(i);
245  p->GetCoords(loc);
246  xyz.push_back(loc);
247  }
248 
250  Array<OneD, NekDouble> eta1 = b[0]->GetZ();
251  Array<OneD, NekDouble> eta2 = b[1]->GetZ();
252  Array<OneD, NekDouble> eta3 = b[2]->GetZ();
253 
254  for (int k = 0; k < b[2]->GetNumPoints(); k++)
255  {
256  for (int j = 0; j < b[1]->GetNumPoints(); j++)
257  {
258  for (int i = 0; i < b[0]->GetNumPoints(); i++)
259  {
260  NekDouble xi1 = 0.5 * (1 + eta1[i]) * (1 - eta3[k]) - 1.0;
261  NekDouble a2 = 0.5 * (1 + xi1);
262  NekDouble b1 = 0.5 * (1 - eta2[j]),
263  b2 = 0.5 * (1 + eta2[j]);
264  NekDouble c1 = 0.5 * (1 - eta3[k]),
265  c2 = 0.5 * (1 + eta3[k]);
266 
267  DNekMat dxdz(3, 3, 1.0, eFULL);
268 
269  dxdz(0, 0) = 0.5 * (-b1 * xyz[0][0] + b1 * xyz[1][0] +
270  b2 * xyz[2][0] - b2 * xyz[3][0]);
271  dxdz(1, 0) = 0.5 * (-b1 * xyz[0][1] + b1 * xyz[1][1] +
272  b2 * xyz[2][1] - b2 * xyz[3][1]);
273  dxdz(2, 0) = 0.5 * (-b1 * xyz[0][2] + b1 * xyz[1][2] +
274  b2 * xyz[2][2] - b2 * xyz[3][2]);
275 
276  dxdz(0, 1) = 0.5 * ((a2 - c1) * xyz[0][0] - a2 * xyz[1][0] +
277  a2 * xyz[2][0] + (c1 - a2) * xyz[3][0] -
278  c2 * xyz[4][0] + c2 * xyz[5][0]);
279  dxdz(1, 1) = 0.5 * ((a2 - c1) * xyz[0][1] - a2 * xyz[1][1] +
280  a2 * xyz[2][1] + (c1 - a2) * xyz[3][1] -
281  c2 * xyz[4][1] + c2 * xyz[5][1]);
282  dxdz(2, 1) = 0.5 * ((a2 - c1) * xyz[0][2] - a2 * xyz[1][2] +
283  a2 * xyz[2][2] + (c1 - a2) * xyz[3][2] -
284  c2 * xyz[4][2] + c2 * xyz[5][2]);
285 
286  dxdz(0, 2) = 0.5 * (-b1 * xyz[0][0] - b2 * xyz[3][0] +
287  b1 * xyz[4][0] + b2 * xyz[5][0]);
288  dxdz(1, 2) = 0.5 * (-b1 * xyz[0][1] - b2 * xyz[3][1] +
289  b1 * xyz[4][1] + b2 * xyz[5][1]);
290  dxdz(2, 2) = 0.5 * (-b1 * xyz[0][2] - b2 * xyz[3][2] +
291  b1 * xyz[4][2] + b2 * xyz[5][2]);
292 
293  dxdz.Invert();
294  ret.push_back(dxdz);
295  }
296  }
297  }
298  }
299  else if (geom->GetShapeType() == LibUtilities::eHexahedron)
300  {
301  vector<Array<OneD, NekDouble>> xyz;
302  for (int i = 0; i < geom->GetNumVerts(); i++)
303  {
305  SpatialDomains::PointGeomSharedPtr p = geom->GetVertex(i);
306  p->GetCoords(loc);
307  xyz.push_back(loc);
308  }
309 
311  Array<OneD, NekDouble> eta1 = b[0]->GetZ();
312  Array<OneD, NekDouble> eta2 = b[1]->GetZ();
313  Array<OneD, NekDouble> eta3 = b[2]->GetZ();
314 
315  for (int k = 0; k < b[2]->GetNumPoints(); k++)
316  {
317  for (int j = 0; j < b[1]->GetNumPoints(); j++)
318  {
319  for (int i = 0; i < b[0]->GetNumPoints(); i++)
320  {
321  NekDouble a1 = 0.5 * (1 - eta1[i]);
322  NekDouble a2 = 0.5 * (1 + eta1[i]);
323  NekDouble b1 = 0.5 * (1 - eta2[j]),
324  b2 = 0.5 * (1 + eta2[j]);
325  NekDouble c1 = 0.5 * (1 - eta3[k]),
326  c2 = 0.5 * (1 + eta3[k]);
327 
328  DNekMat dxdz(3, 3, 1.0, eFULL);
329 
330  dxdz(0, 0) =
331  -0.5 * b1 * c1 * xyz[0][0] + 0.5 * b1 * c1 * xyz[1][0] +
332  0.5 * b2 * c1 * xyz[2][0] - 0.5 * b2 * c1 * xyz[3][0] -
333  0.5 * b1 * c2 * xyz[5][0] + 0.5 * b1 * c2 * xyz[5][0] +
334  0.5 * b2 * c2 * xyz[6][0] - 0.5 * b2 * c2 * xyz[7][0];
335  dxdz(1, 0) =
336  -0.5 * b1 * c1 * xyz[0][1] + 0.5 * b1 * c1 * xyz[1][1] +
337  0.5 * b2 * c1 * xyz[2][1] - 0.5 * b2 * c1 * xyz[3][1] -
338  0.5 * b1 * c2 * xyz[5][1] + 0.5 * b1 * c2 * xyz[5][1] +
339  0.5 * b2 * c2 * xyz[6][1] - 0.5 * b2 * c2 * xyz[7][1];
340  dxdz(2, 0) =
341  -0.5 * b1 * c1 * xyz[0][2] + 0.5 * b1 * c1 * xyz[1][2] +
342  0.5 * b2 * c1 * xyz[2][2] - 0.5 * b2 * c1 * xyz[3][2] -
343  0.5 * b1 * c2 * xyz[5][2] + 0.5 * b1 * c2 * xyz[5][2] +
344  0.5 * b2 * c2 * xyz[6][2] - 0.5 * b2 * c2 * xyz[7][2];
345 
346  dxdz(0, 1) =
347  -0.5 * a1 * c1 * xyz[0][0] - 0.5 * a2 * c1 * xyz[1][0] +
348  0.5 * a2 * c1 * xyz[2][0] + 0.5 * a1 * c1 * xyz[3][0] -
349  0.5 * a1 * c2 * xyz[5][0] - 0.5 * a2 * c2 * xyz[5][0] +
350  0.5 * a2 * c2 * xyz[6][0] + 0.5 * a1 * c2 * xyz[7][0];
351  dxdz(1, 1) =
352  -0.5 * a1 * c1 * xyz[0][1] - 0.5 * a2 * c1 * xyz[1][1] +
353  0.5 * a2 * c1 * xyz[2][1] + 0.5 * a1 * c1 * xyz[3][1] -
354  0.5 * a1 * c2 * xyz[5][1] - 0.5 * a2 * c2 * xyz[5][1] +
355  0.5 * a2 * c2 * xyz[6][1] + 0.5 * a1 * c2 * xyz[7][1];
356  dxdz(2, 1) =
357  -0.5 * a1 * c1 * xyz[0][2] - 0.5 * a2 * c1 * xyz[1][2] +
358  0.5 * a2 * c1 * xyz[2][2] + 0.5 * a1 * c1 * xyz[3][2] -
359  0.5 * a1 * c2 * xyz[5][2] - 0.5 * a2 * c2 * xyz[5][2] +
360  0.5 * a2 * c2 * xyz[6][2] + 0.5 * a1 * c2 * xyz[7][2];
361 
362  dxdz(0, 0) =
363  -0.5 * b1 * a1 * xyz[0][0] - 0.5 * b1 * a2 * xyz[1][0] -
364  0.5 * b2 * a2 * xyz[2][0] - 0.5 * b2 * a1 * xyz[3][0] +
365  0.5 * b1 * a1 * xyz[5][0] + 0.5 * b1 * a2 * xyz[5][0] +
366  0.5 * b2 * a2 * xyz[6][0] + 0.5 * b2 * a1 * xyz[7][0];
367  dxdz(1, 0) =
368  -0.5 * b1 * a1 * xyz[0][1] - 0.5 * b1 * a2 * xyz[1][1] -
369  0.5 * b2 * a2 * xyz[2][1] - 0.5 * b2 * a1 * xyz[3][1] +
370  0.5 * b1 * a1 * xyz[5][1] + 0.5 * b1 * a2 * xyz[5][1] +
371  0.5 * b2 * a2 * xyz[6][1] + 0.5 * b2 * a1 * xyz[7][1];
372  dxdz(2, 0) =
373  -0.5 * b1 * a1 * xyz[0][2] - 0.5 * b1 * a2 * xyz[1][2] -
374  0.5 * b2 * a2 * xyz[2][2] - 0.5 * b2 * a1 * xyz[3][2] +
375  0.5 * b1 * a1 * xyz[5][2] + 0.5 * b1 * a2 * xyz[5][2] +
376  0.5 * b2 * a2 * xyz[6][2] + 0.5 * b2 * a1 * xyz[7][2];
377 
378  dxdz.Invert();
379  ret.push_back(dxdz);
380  }
381  }
382  }
383  }
384  else
385  {
386  ASSERTL0(false, "not coded");
387  }
388 
389  return ret;
390 }
391 
394 {
395  SpatialDomains::GeometrySharedPtr geom = e->GetGeom();
396  StdRegions::StdExpansionSharedPtr chi = e->GetGeom()->GetXmap();
397  LibUtilities::PointsKeyVector p = chi->GetPointsKeys();
398  LibUtilities::PointsKeyVector pElem = e->GetPointsKeys();
399  SpatialDomains::GeomFactorsSharedPtr gfac = geom->GetGeomFactors();
400  const int expDim = chi->GetNumBases();
401  int nElemPts = 1;
402 
403  vector<LibUtilities::BasisKey> basisKeys;
404  bool needsInterp = false;
405 
406  for (int i = 0; i < expDim; ++i)
407  {
408  nElemPts *= pElem[i].GetNumPoints();
409  needsInterp =
410  needsInterp || pElem[i].GetNumPoints() < p[i].GetNumPoints() - 1;
411  }
412 
413  if (needsInterp)
414  {
415  stringstream err;
416  err << "Interpolating from higher order geometry to lower order in "
417  << "element " << geom->GetGlobalID();
418  NEKERROR(ErrorUtil::ewarning, err.str());
419  }
420 
421  for (int i = 0; i < expDim; ++i)
422  {
423  basisKeys.push_back(
424  needsInterp
425  ? chi->GetBasis(i)->GetBasisKey()
426  : LibUtilities::BasisKey(chi->GetBasisType(i),
427  chi->GetBasisNumModes(i), pElem[i]));
428  }
429 
431  switch (chi->DetShapeType())
432  {
435  basisKeys[0], basisKeys[1]);
436  break;
439  basisKeys[0], basisKeys[1]);
440  break;
443  basisKeys[0], basisKeys[1], basisKeys[2]);
444  break;
447  basisKeys[0], basisKeys[1], basisKeys[2]);
448  break;
451  basisKeys[0], basisKeys[1], basisKeys[2]);
452  break;
453  default:
454  ASSERTL0(false, "nope");
455  }
456 
457  SpatialDomains::DerivStorage deriv = gfac->GetDeriv(pElem);
458 
459  const int pts = deriv[0][0].size();
460  const int nq = chiMod->GetTotPoints();
461 
462  ASSERTL0(pts == nq, "what");
463 
464  vector<DNekMat> i2rm = MappingIdealToRef(geom, chiMod);
465  Array<OneD, NekDouble> eta(nq);
466 
467  for (int k = 0; k < pts; ++k)
468  {
469  DNekMat jac(expDim, expDim, 0.0, eFULL);
470  DNekMat jacIdeal(expDim, expDim, 0.0, eFULL);
471 
472  for (int i = 0; i < expDim; ++i)
473  {
474  for (int j = 0; j < expDim; ++j)
475  {
476  jac(j, i) = deriv[i][j][k];
477  }
478  }
479 
480  jacIdeal = jac * i2rm[k];
481  NekDouble jacDet = 1.0;
482 
483  if (expDim == 2)
484  {
485  jacDet = jacIdeal(0, 0) * jacIdeal(1, 1) -
486  jacIdeal(0, 1) * jacIdeal(1, 0);
487  }
488  else if (expDim == 3)
489  {
490  jacDet = jacIdeal(0, 0) * (jacIdeal(1, 1) * jacIdeal(2, 2) -
491  jacIdeal(2, 1) * jacIdeal(1, 2)) -
492  jacIdeal(0, 1) * (jacIdeal(1, 0) * jacIdeal(2, 2) -
493  jacIdeal(2, 0) * jacIdeal(1, 2)) +
494  jacIdeal(0, 2) * (jacIdeal(1, 0) * jacIdeal(2, 1) -
495  jacIdeal(2, 0) * jacIdeal(1, 1));
496  }
497  else
498  {
499  NEKERROR(ErrorUtil::efatal, "invalid expansion dimension.");
500  }
501 
502  if (s)
503  {
504  eta[k] = jacDet;
505  }
506  else
507  {
508  NekDouble frob = 0.0;
509 
510  for (int i = 0; i < expDim; ++i)
511  {
512  for (int j = 0; j < expDim; ++j)
513  {
514  frob += jacIdeal(i, j) * jacIdeal(i, j);
515  }
516  }
517 
518  NekDouble sigma = 0.5 * (jacDet + sqrt(jacDet * jacDet));
519  eta[k] = expDim * pow(sigma, 2.0 / expDim) / frob;
520  }
521  }
522 
523  if (s)
524  {
525  NekDouble mx = -1.0 * numeric_limits<double>::max();
526  NekDouble mn = numeric_limits<double>::max();
527  for (int k = 0; k < pts; k++)
528  {
529  mx = max(mx, eta[k]);
530  mn = min(mn, eta[k]);
531  }
532  for (int k = 0; k < pts; k++)
533  {
534  eta[k] = mn / mx;
535  }
536  }
537 
538  // Project onto output stuff
539  if (needsInterp && pts != 1)
540  {
541  Array<OneD, NekDouble> tmp(nElemPts);
542 
543  if (expDim == 2)
544  {
545  LibUtilities::Interp2D(p[0], p[1], eta, pElem[0], pElem[1], tmp);
546  }
547  else if (expDim == 3)
548  {
549  LibUtilities::Interp3D(p[0], p[1], p[2], eta, pElem[0], pElem[1],
550  pElem[2], tmp);
551  }
552  else
553  {
554  ASSERTL0(false, "mesh dim makes no sense");
555  }
556 
557  eta = tmp;
558  }
559 
560  if (pts == 1)
561  {
562  Vmath::Fill(nq - 1, eta[0], &eta[1], 1);
563  }
564 
565  return eta;
566 }
567 } // namespace FieldUtils
568 } // namespace Nektar
#define ASSERTL0(condition, msg)
Definition: ErrorUtil.hpp:215
#define NEKERROR(type, msg)
Assert Level 0 – Fundamental assert which is used whether in FULLDEBUG, DEBUG or OPT compilation mode...
Definition: ErrorUtil.hpp:209
FieldSharedPtr m_f
Field object.
Definition: Module.h:234
std::map< std::string, ConfigOption > m_config
List of configuration values.
Definition: Module.h:263
Abstract base class for processing modules.
Definition: Module.h:292
Array< OneD, NekDouble > GetQ(LocalRegions::ExpansionSharedPtr e, bool s)
virtual void v_Process(po::variables_map &vm) override
Write mesh to output file.
Describes the specification for a Basis.
Definition: Basis.h:50
tKey RegisterCreatorFunction(tKey idKey, CreatorFunction classCreator, std::string pDesc="")
Register a class with the factory.
Definition: NekFactory.hpp:198
static std::shared_ptr< DataType > AllocateSharedPtr(const Args &...args)
Allocate a shared pointer from the memory pool.
std::shared_ptr< Field > FieldSharedPtr
Definition: Field.hpp:991
std::pair< ModuleType, std::string > ModuleKey
Definition: Module.h:317
vector< DNekMat > MappingIdealToRef(SpatialDomains::GeometrySharedPtr geom, StdRegions::StdExpansionSharedPtr chi)
ModuleFactory & GetModuleFactory()
Definition: Module.cpp:49
void Interp3D(const BasisKey &fbasis0, const BasisKey &fbasis1, const BasisKey &fbasis2, const Array< OneD, const NekDouble > &from, const BasisKey &tbasis0, const BasisKey &tbasis1, const BasisKey &tbasis2, Array< OneD, NekDouble > &to)
this function interpolates a 3D function evaluated at the quadrature points of the 3D basis,...
Definition: Interp.cpp:167
void Interp2D(const BasisKey &fbasis0, const BasisKey &fbasis1, const Array< OneD, const NekDouble > &from, const BasisKey &tbasis0, const BasisKey &tbasis1, Array< OneD, NekDouble > &to)
this function interpolates a 2D function evaluated at the quadrature points of the 2D basis,...
Definition: Interp.cpp:106
std::vector< PointsKey > PointsKeyVector
Definition: Points.h:250
std::shared_ptr< Expansion > ExpansionSharedPtr
Definition: Expansion.h:68
std::shared_ptr< ExpList > ExpListSharedPtr
Shared pointer to an ExpList object.
std::shared_ptr< GeomFactors > GeomFactorsSharedPtr
Pointer to a GeomFactors object.
Definition: GeomFactors.h:62
std::shared_ptr< PointGeom > PointGeomSharedPtr
Definition: Geometry.h:59
std::shared_ptr< Geometry > GeometrySharedPtr
Definition: Geometry.h:53
std::shared_ptr< StdExpansion > StdExpansionSharedPtr
The above copyright notice and this permission notice shall be included.
Definition: CoupledSolver.h:2
double NekDouble
void Fill(int n, const T alpha, T *x, const int incx)
Fill a vector with a constant value.
Definition: Vmath.cpp:45
void Vcopy(int n, const T *x, const int incx, T *y, const int incy)
Definition: Vmath.cpp:1255
scalarT< T > sqrt(scalarT< T > in)
Definition: scalar.hpp:294
Represents a command-line configuration option.
Definition: Module.h:131