Nektar++
ProcessVelocityDivergence.cpp
Go to the documentation of this file.
1 ////////////////////////////////////////////////////////////////////////////////
2 //
3 // File: ProcessVelocityDivergence.cpp
4 //
5 // For more information, please see: http://www.nektar.info/
6 //
7 // The MIT License
8 //
9 // Copyright (c) 2006 Division of Applied Mathematics, Brown University (USA),
10 // Department of Aeronautics, Imperial College London (UK), and Scientific
11 // Computing and Imaging Institute, University of Utah (USA).
12 //
13 // Permission is hereby granted, free of charge, to any person obtaining a
14 // copy of this software and associated documentation files (the "Software"),
15 // to deal in the Software without restriction, including without limitation
16 // the rights to use, copy, modify, merge, publish, distribute, sublicense,
17 // and/or sell copies of the Software, and to permit persons to whom the
18 // Software is furnished to do so, subject to the following conditions:
19 //
20 // The above copyright notice and this permission notice shall be included
21 // in all copies or substantial portions of the Software.
22 //
23 // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
24 // OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
25 // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
26 // THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
27 // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
28 // FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
29 // DEALINGS IN THE SOFTWARE.
30 //
31 // Description: Computes velocity divergence field.
32 //
33 ////////////////////////////////////////////////////////////////////////////////
34 
35 #include <iostream>
36 #include <string>
37 using namespace std;
38 
39 #include <boost/core/ignore_unused.hpp>
40 
41 #include <GlobalMapping/Mapping.h>
43 
44 #include "ProcessMapping.h"
46 
47 namespace Nektar
48 {
49 namespace FieldUtils
50 {
51 
52 ModuleKey ProcessVelocityDivergence::className =
54  ModuleKey(eProcessModule, "divergence"),
55  ProcessVelocityDivergence::create,
56  "Computes divergence of the velocity field.");
57 
58 ProcessVelocityDivergence::ProcessVelocityDivergence(FieldSharedPtr f)
59  : ProcessModule(f)
60 {
61 }
62 
64 {
65 }
66 
67 void ProcessVelocityDivergence::v_Process(po::variables_map &vm)
68 {
69  m_f->SetUpExp(vm);
70 
71  int i, s;
72  int expdim = m_f->m_graph->GetMeshDimension();
73  m_spacedim = expdim;
74  if ((m_f->m_numHomogeneousDir) == 1 || (m_f->m_numHomogeneousDir) == 2)
75  {
76  m_spacedim = 3;
77  }
78  int nfields = m_f->m_variables.size();
79  ASSERTL0(m_spacedim != 1,
80  "Error: Divergence for a 1D problem cannot be computed");
81 
82  // Append field names
83  m_f->m_variables.push_back("divV");
84 
85  // Skip in case of empty partition
86  if (m_f->m_exp[0]->GetNumElmts() == 0)
87  {
88  return;
89  }
90  int npoints = m_f->m_exp[0]->GetNpoints();
93 
94  int nstrips;
95 
96  m_f->m_session->LoadParameter("Strip_Z", nstrips, 1);
97 
98  for (i = 0; i < m_spacedim * m_spacedim; ++i)
99  {
100  grad[i] = Array<OneD, NekDouble>(npoints);
101  }
102 
103  outfield[0] = Array<OneD, NekDouble>(npoints);
104 
106  for (int i = 0; i < m_spacedim; i++)
107  {
108  tmp[i] = Array<OneD, NekDouble>(npoints);
109  }
110 
111  vector<MultiRegions::ExpListSharedPtr> Exp(nstrips);
112 
113  // Get mapping
115 
116  for (s = 0; s < nstrips; ++s) // homogeneous strip varient
117  {
118  // Get velocity and convert to Cartesian system,
119  // if it is still in transformed system
121  GetVelocity(vel, s);
122  if (m_f->m_fieldMetaDataMap.count("MappingCartesianVel"))
123  {
124  if (m_f->m_fieldMetaDataMap["MappingCartesianVel"] == "False")
125  {
126  // Initialize arrays and copy velocity
127  if (m_f->m_exp[0]->GetWaveSpace())
128  {
129  for (int i = 0; i < m_spacedim; ++i)
130  {
131  m_f->m_exp[0]->HomogeneousBwdTrans(npoints, vel[i],
132  vel[i]);
133  }
134  }
135  // Convert velocity to cartesian system
136  mapping->ContravarToCartesian(vel, vel);
137  // Convert back to wavespace if necessary
138  if (m_f->m_exp[0]->GetWaveSpace())
139  {
140  for (int i = 0; i < m_spacedim; ++i)
141  {
142  m_f->m_exp[0]->HomogeneousFwdTrans(npoints, vel[i],
143  vel[i]);
144  }
145  }
146  }
147  }
148 
149  // Calculate Gradient
150  if (m_spacedim == 2)
151  {
152  for (i = 0; i < m_spacedim; ++i)
153  {
154  m_f->m_exp[s * nfields + i]->PhysDeriv(vel[i], tmp[0], tmp[1]);
155  mapping->CovarToCartesian(tmp, tmp);
156  for (int j = 0; j < m_spacedim; j++)
157  {
158  Vmath::Vcopy(npoints, tmp[j], 1, grad[i * m_spacedim + j],
159  1);
160  }
161  }
162  // diV = Ux + Vy
163  Vmath::Vadd(npoints, grad[0 * m_spacedim + 0], 1,
164  grad[1 * m_spacedim + 1], 1, outfield[0], 1);
165  }
166  else
167  {
168  for (i = 0; i < m_spacedim; ++i)
169  {
170  m_f->m_exp[s * nfields + i]->PhysDeriv(vel[i], tmp[0], tmp[1],
171  tmp[2]);
172  mapping->CovarToCartesian(tmp, tmp);
173  for (int j = 0; j < m_spacedim; j++)
174  {
175  Vmath::Vcopy(npoints, tmp[j], 1, grad[i * m_spacedim + j],
176  1);
177  }
178  }
179 
180  // diV = Ux + Vy + Wz
181  Vmath::Vadd(npoints, grad[0 * m_spacedim + 0], 1,
182  grad[1 * m_spacedim + 1], 1, outfield[0], 1);
183  Vmath::Vadd(npoints, outfield[0], 1, grad[2 * m_spacedim + 2], 1,
184  outfield[0], 1);
185  }
186 
187  Exp[s] = m_f->AppendExpList(m_f->m_numHomogeneousDir);
188  Vmath::Vcopy(npoints, outfield[0], 1, Exp[s]->UpdatePhys(), 1);
189  Exp[s]->FwdTransLocalElmt(outfield[0], Exp[s]->UpdateCoeffs());
190  }
191 
192  for (s = 0; s < nstrips; ++s)
193  {
194  m_f->m_exp.insert(m_f->m_exp.begin() + s * (nfields + 1) + nfields,
195  Exp[s]);
196  }
197 }
198 
200  Array<OneD, Array<OneD, NekDouble>> &vel, int strip)
201 {
202  int nfields = m_f->m_variables.size();
203  int npoints = m_f->m_exp[0]->GetNpoints();
204  if (boost::iequals(m_f->m_variables[0], "u"))
205  {
206  // IncNavierStokesSolver
207  for (int i = 0; i < m_spacedim; ++i)
208  {
209  vel[i] = Array<OneD, NekDouble>(npoints);
210  Vmath::Vcopy(npoints, m_f->m_exp[strip * nfields + i]->GetPhys(), 1,
211  vel[i], 1);
212  }
213  }
214  else if (boost::iequals(m_f->m_variables[0], "rho") &&
215  boost::iequals(m_f->m_variables[1], "rhou"))
216  {
217  // CompressibleFlowSolver
218  for (int i = 0; i < m_spacedim; ++i)
219  {
220  vel[i] = Array<OneD, NekDouble>(npoints);
221  Vmath::Vdiv(npoints, m_f->m_exp[strip * nfields + i + 1]->GetPhys(),
222  1, m_f->m_exp[strip * nfields + 0]->GetPhys(), 1,
223  vel[i], 1);
224  }
225  }
226  else
227  {
228  // Unknown
229  ASSERTL0(false,
230  "Could not identify velocity for ProcessVelocityDivergence");
231  }
232 }
233 
234 } // namespace FieldUtils
235 } // namespace Nektar
#define ASSERTL0(condition, msg)
Definition: ErrorUtil.hpp:215
FieldSharedPtr m_f
Field object.
Definition: Module.h:234
static GlobalMapping::MappingSharedPtr GetMapping(FieldSharedPtr f)
Abstract base class for processing modules.
Definition: Module.h:292
void GetVelocity(Array< OneD, Array< OneD, NekDouble >> &vel, int strip=0)
virtual void v_Process(po::variables_map &vm) override
Write mesh to output file.
tKey RegisterCreatorFunction(tKey idKey, CreatorFunction classCreator, std::string pDesc="")
Register a class with the factory.
Definition: NekFactory.hpp:198
std::shared_ptr< Field > FieldSharedPtr
Definition: Field.hpp:991
std::pair< ModuleType, std::string > ModuleKey
Definition: Module.h:317
ModuleFactory & GetModuleFactory()
Definition: Module.cpp:49
GLOBAL_MAPPING_EXPORT typedef std::shared_ptr< Mapping > MappingSharedPtr
A shared pointer to a Mapping object.
Definition: Mapping.h:50
The above copyright notice and this permission notice shall be included.
Definition: CoupledSolver.h:2
void Vadd(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Add vector z = x+y.
Definition: Vmath.cpp:359
void Vdiv(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Multiply vector z = x/y.
Definition: Vmath.cpp:284
void Vcopy(int n, const T *x, const int incx, T *y, const int incy)
Definition: Vmath.cpp:1255