Nektar++
ProcessVorticity.cpp
Go to the documentation of this file.
1 ////////////////////////////////////////////////////////////////////////////////
2 //
3 // File: ProcessVorticity.cpp
4 //
5 // For more information, please see: http://www.nektar.info/
6 //
7 // The MIT License
8 //
9 // Copyright (c) 2006 Division of Applied Mathematics, Brown University (USA),
10 // Department of Aeronautics, Imperial College London (UK), and Scientific
11 // Computing and Imaging Institute, University of Utah (USA).
12 //
13 // Permission is hereby granted, free of charge, to any person obtaining a
14 // copy of this software and associated documentation files (the "Software"),
15 // to deal in the Software without restriction, including without limitation
16 // the rights to use, copy, modify, merge, publish, distribute, sublicense,
17 // and/or sell copies of the Software, and to permit persons to whom the
18 // Software is furnished to do so, subject to the following conditions:
19 //
20 // The above copyright notice and this permission notice shall be included
21 // in all copies or substantial portions of the Software.
22 //
23 // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
24 // OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
25 // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
26 // THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
27 // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
28 // FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
29 // DEALINGS IN THE SOFTWARE.
30 //
31 // Description: Computes vorticity field.
32 //
33 ////////////////////////////////////////////////////////////////////////////////
34 
35 #include <iostream>
36 #include <string>
37 using namespace std;
38 
39 #include <boost/core/ignore_unused.hpp>
40 
41 #include <GlobalMapping/Mapping.h>
43 
44 #include "ProcessMapping.h"
45 #include "ProcessVorticity.h"
46 
47 namespace Nektar
48 {
49 namespace FieldUtils
50 {
51 
52 ModuleKey ProcessVorticity::className =
54  ModuleKey(eProcessModule, "vorticity"), ProcessVorticity::create,
55  "Computes vorticity field.");
56 
57 ProcessVorticity::ProcessVorticity(FieldSharedPtr f) : ProcessModule(f)
58 {
59 }
60 
62 {
63 }
64 
65 void ProcessVorticity::v_Process(po::variables_map &vm)
66 {
67  m_f->SetUpExp(vm);
68 
69  int i, s;
70  int expdim = m_f->m_graph->GetMeshDimension();
71  m_spacedim = expdim;
72  if ((m_f->m_numHomogeneousDir) == 1 || (m_f->m_numHomogeneousDir) == 2)
73  {
74  m_spacedim = 3;
75  }
76  int nfields = m_f->m_variables.size();
77  ASSERTL0(m_spacedim != 1,
78  "Error: Vorticity for a 1D problem cannot be computed");
79  int addfields = (m_spacedim == 2) ? 1 : 3;
80 
81  // Append field names
82  if (addfields == 1)
83  {
84  m_f->m_variables.push_back("W_z");
85  }
86  else
87  {
88  m_f->m_variables.push_back("W_x");
89  m_f->m_variables.push_back("W_y");
90  m_f->m_variables.push_back("W_z");
91  }
92 
93  // Skip in case of empty partition
94  if (m_f->m_exp[0]->GetNumElmts() == 0)
95  {
96  return;
97  }
98  int npoints = m_f->m_exp[0]->GetNpoints();
100  Array<OneD, Array<OneD, NekDouble>> outfield(addfields);
101 
102  int nstrips;
103 
104  m_f->m_session->LoadParameter("Strip_Z", nstrips, 1);
105 
106  for (i = 0; i < m_spacedim * m_spacedim; ++i)
107  {
108  grad[i] = Array<OneD, NekDouble>(npoints);
109  }
110 
111  for (i = 0; i < addfields; ++i)
112  {
113  outfield[i] = Array<OneD, NekDouble>(npoints);
114  }
115 
117  for (int i = 0; i < m_spacedim; i++)
118  {
119  tmp[i] = Array<OneD, NekDouble>(npoints);
120  }
121 
122  // add in new fields
123  for (s = 0; s < nstrips; ++s)
124  {
125  for (i = 0; i < addfields; ++i)
126  {
128  m_f->AppendExpList(m_f->m_numHomogeneousDir);
129  m_f->m_exp.insert(m_f->m_exp.begin() + s * (nfields + addfields) +
130  nfields + i,
131  Exp);
132  }
133  }
134 
135  // Get mapping
137 
138  for (s = 0; s < nstrips; ++s) // homogeneous strip varient
139  {
140  // Get velocity and convert to Cartesian system,
141  // if it is still in transformed system
143  GetVelocity(vel, nfields + addfields, s);
144  if (m_f->m_fieldMetaDataMap.count("MappingCartesianVel"))
145  {
146  if (m_f->m_fieldMetaDataMap["MappingCartesianVel"] == "False")
147  {
148  // Initialize arrays and copy velocity
149  if (m_f->m_exp[0]->GetWaveSpace())
150  {
151  for (int i = 0; i < m_spacedim; ++i)
152  {
153  m_f->m_exp[0]->HomogeneousBwdTrans(npoints, vel[i],
154  vel[i]);
155  }
156  }
157  // Convert velocity to cartesian system
158  mapping->ContravarToCartesian(vel, vel);
159  // Convert back to wavespace if necessary
160  if (m_f->m_exp[0]->GetWaveSpace())
161  {
162  for (int i = 0; i < m_spacedim; ++i)
163  {
164  m_f->m_exp[0]->HomogeneousFwdTrans(npoints, vel[i],
165  vel[i]);
166  }
167  }
168  }
169  }
170 
171  // Calculate Gradient & Vorticity
172  if (m_spacedim == 2)
173  {
174  for (i = 0; i < m_spacedim; ++i)
175  {
176  m_f->m_exp[s * nfields + i]->PhysDeriv(vel[i], tmp[0], tmp[1]);
177  mapping->CovarToCartesian(tmp, tmp);
178  for (int j = 0; j < m_spacedim; j++)
179  {
180  Vmath::Vcopy(npoints, tmp[j], 1, grad[i * m_spacedim + j],
181  1);
182  }
183  }
184  // W_z = Vx - Uy
185  Vmath::Vsub(npoints, grad[1 * m_spacedim + 0], 1,
186  grad[0 * m_spacedim + 1], 1, outfield[0], 1);
187  }
188  else
189  {
190  for (i = 0; i < m_spacedim; ++i)
191  {
192  m_f->m_exp[s * nfields + i]->PhysDeriv(vel[i], tmp[0], tmp[1],
193  tmp[2]);
194  mapping->CovarToCartesian(tmp, tmp);
195  for (int j = 0; j < m_spacedim; j++)
196  {
197  Vmath::Vcopy(npoints, tmp[j], 1, grad[i * m_spacedim + j],
198  1);
199  }
200  }
201 
202  // W_x = Wy - Vz
203  Vmath::Vsub(npoints, grad[2 * m_spacedim + 1], 1,
204  grad[1 * m_spacedim + 2], 1, outfield[0], 1);
205  // W_y = Uz - Wx
206  Vmath::Vsub(npoints, grad[0 * m_spacedim + 2], 1,
207  grad[2 * m_spacedim + 0], 1, outfield[1], 1);
208  // W_z = Vx - Uy
209  Vmath::Vsub(npoints, grad[1 * m_spacedim + 0], 1,
210  grad[0 * m_spacedim + 1], 1, outfield[2], 1);
211  }
212 
213  for (i = 0; i < addfields; ++i)
214  {
215  int fid = s * (nfields + addfields) + nfields + i;
216  Vmath::Vcopy(npoints, outfield[i], 1, m_f->m_exp[fid]->UpdatePhys(),
217  1);
218  m_f->m_exp[fid]->FwdTransLocalElmt(outfield[i],
219  m_f->m_exp[fid]->UpdateCoeffs());
220  }
221  }
222 }
223 
225  int totfields, int strip)
226 {
227  int npoints = m_f->m_exp[0]->GetNpoints();
228  if (boost::iequals(m_f->m_variables[0], "u"))
229  {
230  // IncNavierStokesSolver
231  for (int i = 0; i < m_spacedim; ++i)
232  {
233  vel[i] = Array<OneD, NekDouble>(npoints);
234  Vmath::Vcopy(npoints, m_f->m_exp[strip * totfields + i]->GetPhys(),
235  1, vel[i], 1);
236  }
237  }
238  else if (boost::iequals(m_f->m_variables[0], "rho") &&
239  boost::iequals(m_f->m_variables[1], "rhou"))
240  {
241  // CompressibleFlowSolver
242  for (int i = 0; i < m_spacedim; ++i)
243  {
244  vel[i] = Array<OneD, NekDouble>(npoints);
245  Vmath::Vdiv(
246  npoints, m_f->m_exp[strip * totfields + i + 1]->GetPhys(), 1,
247  m_f->m_exp[strip * totfields + 0]->GetPhys(), 1, vel[i], 1);
248  }
249  }
250  else
251  {
252  // Unknown
253  ASSERTL0(false, "Could not identify velocity for ProcessVorticity");
254  }
255 }
256 
257 } // namespace FieldUtils
258 } // namespace Nektar
#define ASSERTL0(condition, msg)
Definition: ErrorUtil.hpp:215
FieldSharedPtr m_f
Field object.
Definition: Module.h:234
static GlobalMapping::MappingSharedPtr GetMapping(FieldSharedPtr f)
Abstract base class for processing modules.
Definition: Module.h:292
void GetVelocity(Array< OneD, Array< OneD, NekDouble >> &vel, int totfields, int strip=0)
virtual void v_Process(po::variables_map &vm) override
Write mesh to output file.
tKey RegisterCreatorFunction(tKey idKey, CreatorFunction classCreator, std::string pDesc="")
Register a class with the factory.
Definition: NekFactory.hpp:198
std::shared_ptr< Field > FieldSharedPtr
Definition: Field.hpp:991
std::pair< ModuleType, std::string > ModuleKey
Definition: Module.h:317
ModuleFactory & GetModuleFactory()
Definition: Module.cpp:49
GLOBAL_MAPPING_EXPORT typedef std::shared_ptr< Mapping > MappingSharedPtr
A shared pointer to a Mapping object.
Definition: Mapping.h:50
std::shared_ptr< ExpList > ExpListSharedPtr
Shared pointer to an ExpList object.
The above copyright notice and this permission notice shall be included.
Definition: CoupledSolver.h:2
void Vdiv(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Multiply vector z = x/y.
Definition: Vmath.cpp:284
void Vcopy(int n, const T *x, const int incx, T *y, const int incy)
Definition: Vmath.cpp:1255
void Vsub(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Subtract vector z = x-y.
Definition: Vmath.cpp:419