Nektar++
SkewSymmetricAdvection.cpp
Go to the documentation of this file.
1 ///////////////////////////////////////////////////////////////////////////////
2 //
3 // File: SkewSymmetricAdvection.cpp
4 //
5 // For more information, please see: http://www.nektar.info
6 //
7 // The MIT License
8 //
9 // Copyright (c) 2006 Division of Applied Mathematics, Brown University (USA),
10 // Department of Aeronautics, Imperial College London (UK), and Scientific
11 // Computing and Imaging Institute, University of Utah (USA).
12 //
13 // Permission is hereby granted, free of charge, to any person obtaining a
14 // copy of this software and associated documentation files (the "Software"),
15 // to deal in the Software without restriction, including without limitation
16 // the rights to use, copy, modify, merge, publish, distribute, sublicense,
17 // and/or sell copies of the Software, and to permit persons to whom the
18 // Software is furnished to do so, subject to the following conditions:
19 //
20 // The above copyright notice and this permission notice shall be included
21 // in all copies or substantial portions of the Software.
22 //
23 // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
24 // OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
25 // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
26 // THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
27 // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
28 // FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
29 // DEALINGS IN THE SOFTWARE.
30 //
31 // Description: Evaluation of the Navier Stokes advective term
32 //
33 ///////////////////////////////////////////////////////////////////////////////
34 
36 
37 using namespace std;
38 
39 namespace Nektar
40 {
41 string SkewSymmetricAdvection::className =
43  "SkewSymmetric", SkewSymmetricAdvection::create, "Skew Symmetric");
44 
45 /**
46  *
47  */
48 SkewSymmetricAdvection::SkewSymmetricAdvection() : Advection()
49 
50 {
51 }
52 
53 /**
54  *
55  */
57 {
58 }
59 
60 /**
61  *
62  */
66 {
67  Advection::v_InitObject(pSession, pFields);
68 
69  m_homogen_dealiasing = pSession->DefinesSolverInfo("dealiasing");
70  pSession->MatchSolverInfo("ModeType", "SingleMode", m_SingleMode, false);
71  pSession->MatchSolverInfo("ModeType", "HalfMode", m_HalfMode, false);
72 }
73 
74 /**
75  *
76  */
78  const int nConvectiveFields,
80  const Array<OneD, Array<OneD, NekDouble>> &advVel,
81  const Array<OneD, Array<OneD, NekDouble>> &inarray,
82  Array<OneD, Array<OneD, NekDouble>> &outarray, const NekDouble &time,
83  const Array<OneD, Array<OneD, NekDouble>> &pFwd,
84  const Array<OneD, Array<OneD, NekDouble>> &pBwd)
85 {
86  boost::ignore_unused(time, pFwd, pBwd);
87 
88  // use dimension of Velocity vector to dictate dimension of operation
89  int ndim = advVel.size();
90  int nqtot = fields[0]->GetTotPoints();
91  ASSERTL1(nConvectiveFields == inarray.size(),
92  "Number of convective fields and Inarray are not compatible");
93 
94  Array<OneD, Array<OneD, NekDouble>> velocity(ndim);
95  for (int i = 0; i < ndim; ++i)
96  {
97  if (fields[i]->GetWaveSpace() && !m_SingleMode && !m_HalfMode)
98  {
99  velocity[i] = Array<OneD, NekDouble>(nqtot, 0.0);
100  fields[i]->HomogeneousBwdTrans(nqtot, advVel[i], velocity[i]);
101  }
102  else
103  {
104  velocity[i] = advVel[i];
105  }
106  }
107 
108  for (int n = 0; n < nConvectiveFields; ++n)
109  {
110  // ToDo: here we should add a check that V has right dimension
111 
112  int nPointsTot = fields[0]->GetNpoints();
113  Array<OneD, NekDouble> gradV0, gradV1, gradV2, tmp, Up;
114 
115  gradV0 = Array<OneD, NekDouble>(nPointsTot);
116  tmp = Array<OneD, NekDouble>(nPointsTot);
117 
118  // Evaluate V\cdot Grad(u)
119  switch (ndim)
120  {
121  case 1:
122  fields[0]->PhysDeriv(inarray[n], gradV0);
123  Vmath::Vmul(nPointsTot, gradV0, 1, velocity[0], 1, outarray[n],
124  1);
125  Vmath::Vmul(nPointsTot, inarray[n], 1, velocity[0], 1, gradV0,
126  1);
127  fields[0]->PhysDeriv(gradV0, tmp);
128  Vmath::Vadd(nPointsTot, tmp, 1, outarray[n], 1, outarray[n], 1);
129  Vmath::Smul(nPointsTot, 0.5, outarray[n], 1, outarray[n], 1);
130  break;
131  case 2:
132  gradV1 = Array<OneD, NekDouble>(nPointsTot);
133  fields[0]->PhysDeriv(inarray[n], gradV0, gradV1);
134  Vmath::Vmul(nPointsTot, gradV0, 1, velocity[0], 1, outarray[n],
135  1);
136  Vmath::Vvtvp(nPointsTot, gradV1, 1, velocity[1], 1, outarray[n],
137  1, outarray[n], 1);
138  Vmath::Vmul(nPointsTot, inarray[n], 1, velocity[0], 1, gradV0,
139  1);
140  Vmath::Vmul(nPointsTot, inarray[n], 1, velocity[1], 1, gradV1,
141  1);
142  fields[0]->PhysDeriv(MultiRegions::DirCartesianMap[0], gradV0,
143  tmp);
144  Vmath::Vadd(nPointsTot, tmp, 1, outarray[n], 1, outarray[n], 1);
145  fields[0]->PhysDeriv(MultiRegions::DirCartesianMap[1], gradV1,
146  tmp);
147  Vmath::Vadd(nPointsTot, tmp, 1, outarray[n], 1, outarray[n], 1);
148  Vmath::Smul(nPointsTot, 0.5, outarray[n], 1, outarray[n], 1);
149  break;
150  case 3:
151  gradV1 = Array<OneD, NekDouble>(nPointsTot);
152  gradV2 = Array<OneD, NekDouble>(nPointsTot);
153 
154  fields[0]->PhysDeriv(inarray[n], gradV0, gradV1, gradV2);
155 
156  // outarray[n] = 1/2(u*du/dx + v*du/dy + w*du/dz + duu/dx +
157  // duv/dy + duw/dz)
158 
159  if (m_homogen_dealiasing == true &&
160  fields[0]->GetWaveSpace() == false)
161  {
162  fields[0]->DealiasedProd(nPointsTot, velocity[0], gradV0,
163  gradV0);
164  fields[0]->DealiasedProd(nPointsTot, velocity[1], gradV1,
165  gradV1);
166  fields[0]->DealiasedProd(nPointsTot, velocity[2], gradV2,
167  gradV2);
168  Vmath::Vadd(nPointsTot, gradV0, 1, gradV1, 1, outarray[n],
169  1);
170  Vmath::Vadd(nPointsTot, gradV2, 1, outarray[n], 1,
171  outarray[n], 1);
172  fields[0]->DealiasedProd(nPointsTot, inarray[n],
173  velocity[0], gradV0);
174  fields[0]->DealiasedProd(nPointsTot, inarray[n],
175  velocity[1], gradV1);
176  fields[0]->DealiasedProd(nPointsTot, inarray[n],
177  velocity[2], gradV2);
178  fields[0]->PhysDeriv(MultiRegions::DirCartesianMap[0],
179  gradV0, tmp);
180  Vmath::Vadd(nPointsTot, tmp, 1, outarray[n], 1, outarray[n],
181  1);
182  fields[0]->PhysDeriv(MultiRegions::DirCartesianMap[1],
183  gradV1, tmp);
184  Vmath::Vadd(nPointsTot, tmp, 1, outarray[n], 1, outarray[n],
185  1);
186  fields[0]->PhysDeriv(MultiRegions::DirCartesianMap[2],
187  gradV2, tmp);
188  Vmath::Vadd(nPointsTot, tmp, 1, outarray[n], 1, outarray[n],
189  1);
190  Vmath::Smul(nPointsTot, 0.5, outarray[n], 1, outarray[n],
191  1);
192  }
193  else if (fields[0]->GetWaveSpace() == true &&
194  m_homogen_dealiasing == false)
195  {
196  Up = Array<OneD, NekDouble>(nPointsTot);
197  // vector reused to avoid even more memory requirements
198  // names may be misleading
199  fields[0]->HomogeneousBwdTrans(nPointsTot, gradV0, tmp);
200  Vmath::Vmul(nPointsTot, tmp, 1, velocity[0], 1, outarray[n],
201  1); // + u*du/dx
202  fields[0]->HomogeneousBwdTrans(nPointsTot, gradV1, tmp);
203  Vmath::Vvtvp(nPointsTot, tmp, 1, velocity[1], 1,
204  outarray[n], 1, outarray[n], 1); // + v*du/dy
205  fields[0]->HomogeneousBwdTrans(nPointsTot, gradV2, tmp);
206  Vmath::Vvtvp(nPointsTot, tmp, 1, velocity[2], 1,
207  outarray[n], 1, outarray[n], 1); // + w*du/dz
208 
209  fields[0]->HomogeneousBwdTrans(nPointsTot, inarray[n], Up);
210  Vmath::Vmul(nPointsTot, Up, 1, velocity[0], 1, gradV0, 1);
211  Vmath::Vmul(nPointsTot, Up, 1, velocity[1], 1, gradV1, 1);
212  Vmath::Vmul(nPointsTot, Up, 1, velocity[2], 1, gradV2, 1);
213 
214  fields[0]->SetWaveSpace(false);
215  fields[0]->PhysDeriv(MultiRegions::DirCartesianMap[0],
216  gradV0, tmp); // duu/dx
217  Vmath::Vadd(nPointsTot, tmp, 1, outarray[n], 1, outarray[n],
218  1);
219  fields[0]->PhysDeriv(MultiRegions::DirCartesianMap[1],
220  gradV1, tmp); // duv/dy
221  Vmath::Vadd(nPointsTot, tmp, 1, outarray[n], 1, outarray[n],
222  1);
223  fields[0]->PhysDeriv(MultiRegions::DirCartesianMap[2],
224  gradV2, tmp); // duw/dz
225  Vmath::Vadd(nPointsTot, tmp, 1, outarray[n], 1, outarray[n],
226  1);
227  fields[0]->SetWaveSpace(true);
228 
229  Vmath::Smul(nPointsTot, 0.5, outarray[n], 1, tmp, 1);
230  fields[0]->HomogeneousFwdTrans(nPointsTot, tmp,
231  outarray[n]);
232  }
233  else if (fields[0]->GetWaveSpace() == false &&
234  m_homogen_dealiasing == false)
235  {
236  Vmath::Vmul(nPointsTot, gradV0, 1, velocity[0], 1,
237  outarray[n], 1);
238  Vmath::Vvtvp(nPointsTot, gradV1, 1, velocity[1], 1,
239  outarray[n], 1, outarray[n], 1);
240  Vmath::Vvtvp(nPointsTot, gradV2, 1, velocity[2], 1,
241  outarray[n], 1, outarray[n], 1);
242  Vmath::Vmul(nPointsTot, inarray[n], 1, velocity[0], 1,
243  gradV0, 1);
244  Vmath::Vmul(nPointsTot, inarray[n], 1, velocity[1], 1,
245  gradV1, 1);
246  Vmath::Vmul(nPointsTot, inarray[n], 1, velocity[2], 1,
247  gradV2, 1);
248  fields[0]->PhysDeriv(MultiRegions::DirCartesianMap[0],
249  gradV0, tmp);
250  Vmath::Vadd(nPointsTot, tmp, 1, outarray[n], 1, outarray[n],
251  1);
252  fields[0]->PhysDeriv(MultiRegions::DirCartesianMap[1],
253  gradV1, tmp);
254  Vmath::Vadd(nPointsTot, tmp, 1, outarray[n], 1, outarray[n],
255  1);
256  fields[0]->PhysDeriv(MultiRegions::DirCartesianMap[2],
257  gradV2, tmp);
258  Vmath::Vadd(nPointsTot, tmp, 1, outarray[n], 1, outarray[n],
259  1);
260  Vmath::Smul(nPointsTot, 0.5, outarray[n], 1, outarray[n],
261  1);
262  }
263  else
264  {
265  ASSERTL0(false,
266  "Dealiasing is not allowed in combination "
267  "with the Skew-Symmetric advection form for "
268  "efficiency reasons.");
269  }
270  break;
271  default:
272  ASSERTL0(false, "dimension unknown");
273  }
274 
275  Vmath::Neg(nqtot, outarray[n], 1);
276  }
277 }
278 
279 } // namespace Nektar
#define ASSERTL0(condition, msg)
Definition: ErrorUtil.hpp:215
#define ASSERTL1(condition, msg)
Assert Level 1 – Debugging which is used whether in FULLDEBUG or DEBUG compilation mode....
Definition: ErrorUtil.hpp:249
tKey RegisterCreatorFunction(tKey idKey, CreatorFunction classCreator, std::string pDesc="")
Register a class with the factory.
Definition: NekFactory.hpp:198
virtual void v_Advect(const int nConvectiveFields, const Array< OneD, MultiRegions::ExpListSharedPtr > &fields, const Array< OneD, Array< OneD, NekDouble >> &advVel, const Array< OneD, Array< OneD, NekDouble >> &inarray, Array< OneD, Array< OneD, NekDouble >> &outarray, const NekDouble &time, const Array< OneD, Array< OneD, NekDouble >> &pFwd=NullNekDoubleArrayOfArray, const Array< OneD, Array< OneD, NekDouble >> &pBwd=NullNekDoubleArrayOfArray) override
Advects a vector field.
virtual void v_InitObject(LibUtilities::SessionReaderSharedPtr pSession, Array< OneD, MultiRegions::ExpListSharedPtr > pFields) override
Initialises the advection object.
An abstract base class encapsulating the concept of advection of a vector field.
Definition: Advection.h:70
virtual SOLVER_UTILS_EXPORT void v_InitObject(LibUtilities::SessionReaderSharedPtr pSession, Array< OneD, MultiRegions::ExpListSharedPtr > pFields)
Initialises the advection object.
Definition: Advection.cpp:353
std::shared_ptr< SessionReader > SessionReaderSharedPtr
MultiRegions::Direction const DirCartesianMap[]
Definition: ExpList.h:91
AdvectionFactory & GetAdvectionFactory()
Gets the factory for initialising advection objects.
Definition: Advection.cpp:47
The above copyright notice and this permission notice shall be included.
Definition: CoupledSolver.h:2
double NekDouble
void Vmul(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Multiply vector z = x*y.
Definition: Vmath.cpp:209
void Neg(int n, T *x, const int incx)
Negate x = -x.
Definition: Vmath.cpp:518
void Vvtvp(int n, const T *w, const int incw, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
vvtvp (vector times vector plus vector): z = w*x + y
Definition: Vmath.cpp:574
void Vadd(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Add vector z = x+y.
Definition: Vmath.cpp:359
void Smul(int n, const T alpha, const T *x, const int incx, T *y, const int incy)
Scalar multiply y = alpha*x.
Definition: Vmath.cpp:248