Nektar++
Public Member Functions | Protected Attributes | Private Member Functions | List of all members
Nektar::Collections::Helmholtz_IterPerExp Class Referencefinal

Helmholtz operator using LocalRegions implementation. More...

Inheritance diagram for Nektar::Collections::Helmholtz_IterPerExp:
[legend]

Public Member Functions

 ~Helmholtz_IterPerExp () final
 
void operator() (const Array< OneD, const NekDouble > &input, Array< OneD, NekDouble > &output, Array< OneD, NekDouble > &output1, Array< OneD, NekDouble > &output2, Array< OneD, NekDouble > &wsp) override final
 Perform operation. More...
 
void operator() (int dir, const Array< OneD, const NekDouble > &input, Array< OneD, NekDouble > &output, Array< OneD, NekDouble > &wsp) override final
 
virtual void CheckFactors (StdRegions::FactorMap factors, int coll_phys_offset) override
 Check the validity of supplied constant factors. More...
 
- Public Member Functions inherited from Nektar::Collections::Operator
 Operator (std::vector< StdRegions::StdExpansionSharedPtr > pCollExp, std::shared_ptr< CoalescedGeomData > GeomData, StdRegions::FactorMap factors)
 Constructor. More...
 
virtual COLLECTIONS_EXPORT ~Operator ()
 
unsigned int GetWspSize ()
 Get the size of the required workspace. More...
 
unsigned int GetNumElmt ()
 Get expansion pointer. More...
 
StdRegions::StdExpansionSharedPtr GetExpSharedPtr ()
 Get expansion pointer. More...
 

Protected Attributes

Array< TwoD, const NekDoublem_derivFac
 
Array< OneD, const NekDoublem_jac
 
int m_dim
 
int m_coordim
 
StdRegions::FactorMap m_factors
 
NekDouble m_lambda
 
bool m_HasVarCoeffDiff
 
Array< OneD, Array< OneD, NekDouble > > m_diff
 
const StdRegions::ConstFactorType m_factorCoeffDef [3][3]
 
- Protected Attributes inherited from Nektar::Collections::Operator
bool m_isDeformed
 
StdRegions::StdExpansionSharedPtr m_stdExp
 
unsigned int m_numElmt
 
unsigned int m_nqe
 
unsigned int m_wspSize
 

Private Member Functions

 Helmholtz_IterPerExp (vector< StdRegions::StdExpansionSharedPtr > pCollExp, CoalescedGeomDataSharedPtr pGeomData, StdRegions::FactorMap factors)
 

Detailed Description

Helmholtz operator using LocalRegions implementation.

Definition at line 163 of file library/Collections/Helmholtz.cpp.

Constructor & Destructor Documentation

◆ ~Helmholtz_IterPerExp()

Nektar::Collections::Helmholtz_IterPerExp::~Helmholtz_IterPerExp ( )
inlinefinal

Definition at line 168 of file library/Collections/Helmholtz.cpp.

169  {
170  }

◆ Helmholtz_IterPerExp()

Nektar::Collections::Helmholtz_IterPerExp::Helmholtz_IterPerExp ( vector< StdRegions::StdExpansionSharedPtr pCollExp,
CoalescedGeomDataSharedPtr  pGeomData,
StdRegions::FactorMap  factors 
)
inlineprivate

Definition at line 494 of file library/Collections/Helmholtz.cpp.

497  : Operator(pCollExp, pGeomData, factors)
498  {
499  LibUtilities::PointsKeyVector PtsKey = m_stdExp->GetPointsKeys();
500  m_dim = PtsKey.size();
501  m_coordim = pCollExp[0]->GetCoordim();
502  int nqtot = m_stdExp->GetTotPoints();
503 
504  m_derivFac = pGeomData->GetDerivFactors(pCollExp);
505  m_jac = pGeomData->GetJac(pCollExp);
506  m_wspSize = (2 * m_coordim + 1) * nqtot;
507 
508  m_lambda = 1.0;
509  m_HasVarCoeffDiff = false;
511  this->CheckFactors(factors, 0);
512  }
virtual void CheckFactors(StdRegions::FactorMap factors, int coll_phys_offset) override
Check the validity of supplied constant factors.
StdRegions::StdExpansionSharedPtr m_stdExp
Definition: Operator.h:165
Operator(std::vector< StdRegions::StdExpansionSharedPtr > pCollExp, std::shared_ptr< CoalescedGeomData > GeomData, StdRegions::FactorMap factors)
Constructor.
Definition: Operator.cpp:43
std::vector< PointsKey > PointsKeyVector
Definition: Points.h:250
static FactorMap NullFactorMap
Definition: StdRegions.hpp:404

References Nektar::StdRegions::NullFactorMap.

Member Function Documentation

◆ CheckFactors()

virtual void Nektar::Collections::Helmholtz_IterPerExp::CheckFactors ( StdRegions::FactorMap  factors,
int  coll_phys_offset 
)
inlineoverridevirtual

Check the validity of supplied constant factors.

Parameters
factorsMap of factors
coll_phys_offsetUnused

Implements Nektar::Collections::Operator.

Definition at line 416 of file library/Collections/Helmholtz.cpp.

418  {
419  boost::ignore_unused(coll_phys_offset);
420 
421  // If match previous factors, nothing to do.
422  if (m_factors == factors)
423  {
424  return;
425  }
426 
427  m_factors = factors;
428 
429  // Check Lambda constant of Helmholtz operator
430  auto x = factors.find(StdRegions::eFactorLambda);
431  ASSERTL1(
432  x != factors.end(),
433  "Constant factor not defined: " +
434  std::string(
436  m_lambda = x->second;
437 
438  // If varcoeffs not supplied, nothing else to do.
439  m_HasVarCoeffDiff = false;
440  auto d = factors.find(StdRegions::eFactorCoeffD00);
441  if (d == factors.end())
442  {
443  return;
444  }
445 
446  m_diff = Array<OneD, Array<OneD, NekDouble>>(m_coordim);
447  for (int i = 0; i < m_coordim; ++i)
448  {
449  m_diff[i] = Array<OneD, NekDouble>(m_coordim, 0.0);
450  }
451 
452  for (int i = 0; i < m_coordim; ++i)
453  {
454  d = factors.find(m_factorCoeffDef[i][i]);
455  if (d != factors.end())
456  {
457  m_diff[i][i] = d->second;
458  }
459  else
460  {
461  m_diff[i][i] = 1.0;
462  }
463 
464  for (int j = i + 1; j < m_coordim; ++j)
465  {
466  d = factors.find(m_factorCoeffDef[i][j]);
467  if (d != factors.end())
468  {
469  m_diff[i][j] = m_diff[j][i] = d->second;
470  }
471  }
472  }
473  m_HasVarCoeffDiff = true;
474  }
#define ASSERTL1(condition, msg)
Assert Level 1 – Debugging which is used whether in FULLDEBUG or DEBUG compilation mode....
Definition: ErrorUtil.hpp:249
const StdRegions::ConstFactorType m_factorCoeffDef[3][3]
Array< OneD, Array< OneD, NekDouble > > m_diff
const char *const ConstFactorTypeMap[]
Definition: StdRegions.hpp:382

References ASSERTL1, Nektar::StdRegions::ConstFactorTypeMap, Nektar::StdRegions::eFactorCoeffD00, and Nektar::StdRegions::eFactorLambda.

◆ operator()() [1/2]

void Nektar::Collections::Helmholtz_IterPerExp::operator() ( const Array< OneD, const NekDouble > &  input,
Array< OneD, NekDouble > &  output0,
Array< OneD, NekDouble > &  output1,
Array< OneD, NekDouble > &  output2,
Array< OneD, NekDouble > &  wsp 
)
inlinefinaloverridevirtual

Perform operation.

Implements Nektar::Collections::Operator.

Definition at line 172 of file library/Collections/Helmholtz.cpp.

177  {
178  boost::ignore_unused(output1, output2);
179 
180  const int nCoeffs = m_stdExp->GetNcoeffs();
181  const int nPhys = m_stdExp->GetTotPoints();
182 
183  ASSERTL1(input.size() >= m_numElmt * nCoeffs,
184  "input array size is insufficient");
185  ASSERTL1(output.size() >= m_numElmt * nCoeffs,
186  "output array size is insufficient");
187 
188  Array<OneD, NekDouble> tmpphys, t1;
189  Array<OneD, Array<OneD, NekDouble>> dtmp(3);
190  Array<OneD, Array<OneD, NekDouble>> tmp(3);
191 
192  tmpphys = wsp;
193  for (int i = 1; i < m_coordim + 1; ++i)
194  {
195  dtmp[i - 1] = wsp + i * nPhys;
196  tmp[i - 1] = wsp + (i + m_coordim) * nPhys;
197  }
198 
199  for (int i = 0; i < m_numElmt; ++i)
200  {
201  m_stdExp->BwdTrans(input + i * nCoeffs, tmpphys);
202 
203  // local derivative
204  m_stdExp->PhysDeriv(tmpphys, dtmp[0], dtmp[1], dtmp[2]);
205 
206  // determine mass matrix term
207  if (m_isDeformed)
208  {
209  Vmath::Vmul(nPhys, m_jac + i * nPhys, 1, tmpphys, 1, tmpphys,
210  1);
211  }
212  else
213  {
214  Vmath::Smul(nPhys, m_jac[i], tmpphys, 1, tmpphys, 1);
215  }
216 
217  m_stdExp->IProductWRTBase(tmpphys, t1 = output + i * nCoeffs);
218  Vmath::Smul(nCoeffs, m_lambda, output + i * nCoeffs, 1,
219  t1 = output + i * nCoeffs, 1);
220 
221  if (m_isDeformed)
222  {
223  // calculate full derivative
224  for (int j = 0; j < m_coordim; ++j)
225  {
226  Vmath::Vmul(nPhys,
227  m_derivFac[j * m_dim].origin() + i * nPhys, 1,
228  &dtmp[0][0], 1, &tmp[j][0], 1);
229 
230  for (int k = 1; k < m_dim; ++k)
231  {
232  Vmath::Vvtvp(
233  nPhys,
234  m_derivFac[j * m_dim + k].origin() + i * nPhys, 1,
235  &dtmp[k][0], 1, &tmp[j][0], 1, &tmp[j][0], 1);
236  }
237  }
238 
239  if (m_HasVarCoeffDiff)
240  {
241  // calculate dtmp[i] = dx/dxi sum_j diff[0][j] tmp[j]
242  // + dy/dxi sum_j diff[1][j] tmp[j]
243  // + dz/dxi sum_j diff[2][j] tmp[j]
244 
245  // First term
246  Vmath::Smul(nPhys, m_diff[0][0], &tmp[0][0], 1, &tmpphys[0],
247  1);
248  for (int l = 1; l < m_coordim; ++l)
249  {
250  Vmath::Svtvp(nPhys, m_diff[0][l], &tmp[l][0], 1,
251  &tmpphys[0], 1, &tmpphys[0], 1);
252  }
253 
254  for (int j = 0; j < m_dim; ++j)
255  {
256  Vmath::Vmul(nPhys, m_derivFac[j].origin() + i * nPhys,
257  1, &tmpphys[0], 1, &dtmp[j][0], 1);
258  }
259 
260  // Second and third terms
261  for (int k = 1; k < m_coordim; ++k)
262  {
263  Vmath::Smul(nPhys, m_diff[k][0], &tmp[0][0], 1,
264  &tmpphys[0], 1);
265  for (int l = 1; l < m_coordim; ++l)
266  {
267  Vmath::Svtvp(nPhys, m_diff[k][l], &tmp[l][0], 1,
268  &tmpphys[0], 1, &tmpphys[0], 1);
269  }
270 
271  for (int j = 0; j < m_dim; ++j)
272  {
273  Vmath::Vvtvp(nPhys,
274  m_derivFac[j + k * m_dim].origin() +
275  i * nPhys,
276  1, &tmpphys[0], 1, &dtmp[j][0], 1,
277  &dtmp[j][0], 1);
278  }
279  }
280  }
281  else
282  {
283  // calculate dx/dxi tmp[0] + dy/dxi tmp[1]
284  // + dz/dxi tmp[2]
285  for (int j = 0; j < m_dim; ++j)
286  {
287  Vmath::Vmul(nPhys, m_derivFac[j].origin() + i * nPhys,
288  1, &tmp[0][0], 1, &dtmp[j][0], 1);
289 
290  for (int k = 1; k < m_coordim; ++k)
291  {
292  Vmath::Vvtvp(nPhys,
293  m_derivFac[j + k * m_dim].origin() +
294  i * nPhys,
295  1, &tmp[k][0], 1, &dtmp[j][0], 1,
296  &dtmp[j][0], 1);
297  }
298  }
299  }
300 
301  // calculate Iproduct WRT Std Deriv
302  for (int j = 0; j < m_dim; ++j)
303  {
304 
305  // multiply by Jacobian
306  Vmath::Vmul(nPhys, m_jac + i * nPhys, 1, dtmp[j], 1,
307  dtmp[j], 1);
308 
309  m_stdExp->IProductWRTDerivBase(j, dtmp[j], tmp[0]);
310  Vmath::Vadd(nCoeffs, tmp[0], 1, output + i * nCoeffs, 1,
311  t1 = output + i * nCoeffs, 1);
312  }
313  }
314  else
315  {
316  // calculate full derivative
317  for (int j = 0; j < m_coordim; ++j)
318  {
319  Vmath::Smul(nPhys, m_derivFac[j * m_dim][i], &dtmp[0][0], 1,
320  &tmp[j][0], 1);
321 
322  for (int k = 1; k < m_dim; ++k)
323  {
324  Vmath::Svtvp(nPhys, m_derivFac[j * m_dim + k][i],
325  &dtmp[k][0], 1, &tmp[j][0], 1, &tmp[j][0],
326  1);
327  }
328  }
329 
330  if (m_HasVarCoeffDiff)
331  {
332  // calculate dtmp[i] = dx/dxi sum_j diff[0][j] tmp[j]
333  // + dy/dxi sum_j diff[1][j] tmp[j]
334  // + dz/dxi sum_j diff[2][j] tmp[j]
335 
336  // First term
337  Vmath::Smul(nPhys, m_diff[0][0], &tmp[0][0], 1, &tmpphys[0],
338  1);
339  for (int l = 1; l < m_coordim; ++l)
340  {
341  Vmath::Svtvp(nPhys, m_diff[0][l], &tmp[l][0], 1,
342  &tmpphys[0], 1, &tmpphys[0], 1);
343  }
344 
345  for (int j = 0; j < m_dim; ++j)
346  {
347  Vmath::Smul(nPhys, m_derivFac[j][i], &tmpphys[0], 1,
348  &dtmp[j][0], 1);
349  }
350 
351  // Second and third terms
352  for (int k = 1; k < m_coordim; ++k)
353  {
354  Vmath::Smul(nPhys, m_diff[k][0], &tmp[0][0], 1,
355  &tmpphys[0], 1);
356  for (int l = 1; l < m_coordim; ++l)
357  {
358  Vmath::Svtvp(nPhys, m_diff[k][l], &tmp[l][0], 1,
359  &tmpphys[0], 1, &tmpphys[0], 1);
360  }
361 
362  for (int j = 0; j < m_dim; ++j)
363  {
364  Vmath::Svtvp(nPhys, m_derivFac[j + k * m_dim][i],
365  &tmpphys[0], 1, &dtmp[j][0], 1,
366  &dtmp[j][0], 1);
367  }
368  }
369  }
370  else
371  {
372  // calculate dx/dxi tmp[0] + dy/dxi tmp[2]
373  // + dz/dxi tmp[3]
374  for (int j = 0; j < m_dim; ++j)
375  {
376  Vmath::Smul(nPhys, m_derivFac[j][i], &tmp[0][0], 1,
377  &dtmp[j][0], 1);
378 
379  for (int k = 1; k < m_coordim; ++k)
380  {
381  Vmath::Svtvp(nPhys, m_derivFac[j + k * m_dim][i],
382  &tmp[k][0], 1, &dtmp[j][0], 1,
383  &dtmp[j][0], 1);
384  }
385  }
386  }
387 
388  // calculate Iproduct WRT Std Deriv
389  for (int j = 0; j < m_dim; ++j)
390  {
391  // multiply by Jacobian
392  Vmath::Smul(nPhys, m_jac[i], dtmp[j], 1, dtmp[j], 1);
393 
394  m_stdExp->IProductWRTDerivBase(j, dtmp[j], tmp[0]);
395  Vmath::Vadd(nCoeffs, tmp[0], 1, output + i * nCoeffs, 1,
396  t1 = output + i * nCoeffs, 1);
397  }
398  }
399  }
400  }
void Vmul(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Multiply vector z = x*y.
Definition: Vmath.cpp:209
void Svtvp(int n, const T alpha, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
svtvp (scalar times vector plus vector): z = alpha*x + y
Definition: Vmath.cpp:622
void Vvtvp(int n, const T *w, const int incw, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
vvtvp (vector times vector plus vector): z = w*x + y
Definition: Vmath.cpp:574
void Vadd(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Add vector z = x+y.
Definition: Vmath.cpp:359
void Smul(int n, const T alpha, const T *x, const int incx, T *y, const int incy)
Scalar multiply y = alpha*x.
Definition: Vmath.cpp:248

References ASSERTL1, Vmath::Smul(), Vmath::Svtvp(), Vmath::Vadd(), Vmath::Vmul(), and Vmath::Vvtvp().

◆ operator()() [2/2]

void Nektar::Collections::Helmholtz_IterPerExp::operator() ( int  dir,
const Array< OneD, const NekDouble > &  input,
Array< OneD, NekDouble > &  output,
Array< OneD, NekDouble > &  wsp 
)
inlinefinaloverridevirtual

Implements Nektar::Collections::Operator.

Definition at line 402 of file library/Collections/Helmholtz.cpp.

405  {
406  boost::ignore_unused(dir, input, output, wsp);
407  NEKERROR(ErrorUtil::efatal, "Not valid for this operator.");
408  }
#define NEKERROR(type, msg)
Assert Level 0 – Fundamental assert which is used whether in FULLDEBUG, DEBUG or OPT compilation mode...
Definition: ErrorUtil.hpp:209

References NEKERROR.

Member Data Documentation

◆ m_coordim

int Nektar::Collections::Helmholtz_IterPerExp::m_coordim
protected

Definition at line 480 of file library/Collections/Helmholtz.cpp.

◆ m_derivFac

Array<TwoD, const NekDouble> Nektar::Collections::Helmholtz_IterPerExp::m_derivFac
protected

Definition at line 477 of file library/Collections/Helmholtz.cpp.

◆ m_diff

Array<OneD, Array<OneD, NekDouble> > Nektar::Collections::Helmholtz_IterPerExp::m_diff
protected

Definition at line 484 of file library/Collections/Helmholtz.cpp.

◆ m_dim

int Nektar::Collections::Helmholtz_IterPerExp::m_dim
protected

Definition at line 479 of file library/Collections/Helmholtz.cpp.

◆ m_factorCoeffDef

const StdRegions::ConstFactorType Nektar::Collections::Helmholtz_IterPerExp::m_factorCoeffDef[3][3]
protected

◆ m_factors

StdRegions::FactorMap Nektar::Collections::Helmholtz_IterPerExp::m_factors
protected

Definition at line 481 of file library/Collections/Helmholtz.cpp.

◆ m_HasVarCoeffDiff

bool Nektar::Collections::Helmholtz_IterPerExp::m_HasVarCoeffDiff
protected

Definition at line 483 of file library/Collections/Helmholtz.cpp.

◆ m_jac

Array<OneD, const NekDouble> Nektar::Collections::Helmholtz_IterPerExp::m_jac
protected

Definition at line 478 of file library/Collections/Helmholtz.cpp.

◆ m_lambda

NekDouble Nektar::Collections::Helmholtz_IterPerExp::m_lambda
protected

Definition at line 482 of file library/Collections/Helmholtz.cpp.