Nektar++
Public Member Functions | Protected Attributes | Private Member Functions | List of all members
Nektar::Collections::PhysDeriv_SumFac_Pyr Class Referencefinal

Phys deriv operator using sum-factorisation (Pyramid) More...

Inheritance diagram for Nektar::Collections::PhysDeriv_SumFac_Pyr:
[legend]

Public Member Functions

 ~PhysDeriv_SumFac_Pyr () final
 
void operator() (const Array< OneD, const NekDouble > &input, Array< OneD, NekDouble > &output0, Array< OneD, NekDouble > &output1, Array< OneD, NekDouble > &output2, Array< OneD, NekDouble > &wsp) override final
 Perform operation. More...
 
void operator() (int dir, const Array< OneD, const NekDouble > &input, Array< OneD, NekDouble > &output, Array< OneD, NekDouble > &wsp) override final
 
virtual void CheckFactors (StdRegions::FactorMap factors, int coll_phys_offset) override
 Check the validity of the supplied factor map. More...
 
- Public Member Functions inherited from Nektar::Collections::Operator
 Operator (std::vector< StdRegions::StdExpansionSharedPtr > pCollExp, std::shared_ptr< CoalescedGeomData > GeomData, StdRegions::FactorMap factors)
 Constructor. More...
 
virtual COLLECTIONS_EXPORT ~Operator ()
 
unsigned int GetWspSize ()
 Get the size of the required workspace. More...
 
unsigned int GetNumElmt ()
 Get expansion pointer. More...
 
StdRegions::StdExpansionSharedPtr GetExpSharedPtr ()
 Get expansion pointer. More...
 

Protected Attributes

Array< TwoD, const NekDoublem_derivFac
 
int m_coordim
 
const int m_nquad0
 
const int m_nquad1
 
const int m_nquad2
 
NekDoublem_Deriv0
 
NekDoublem_Deriv1
 
NekDoublem_Deriv2
 
Array< OneD, NekDoublem_fac0
 
Array< OneD, NekDoublem_fac1
 
Array< OneD, NekDoublem_fac2
 
- Protected Attributes inherited from Nektar::Collections::Operator
bool m_isDeformed
 
StdRegions::StdExpansionSharedPtr m_stdExp
 
unsigned int m_numElmt
 
unsigned int m_nqe
 
unsigned int m_wspSize
 

Private Member Functions

 PhysDeriv_SumFac_Pyr (vector< StdRegions::StdExpansionSharedPtr > pCollExp, CoalescedGeomDataSharedPtr pGeomData, StdRegions::FactorMap factors)
 

Detailed Description

Phys deriv operator using sum-factorisation (Pyramid)

Definition at line 2015 of file PhysDeriv.cpp.

Constructor & Destructor Documentation

◆ ~PhysDeriv_SumFac_Pyr()

Nektar::Collections::PhysDeriv_SumFac_Pyr::~PhysDeriv_SumFac_Pyr ( )
inlinefinal

Definition at line 2020 of file PhysDeriv.cpp.

2021  {
2022  }

◆ PhysDeriv_SumFac_Pyr()

Nektar::Collections::PhysDeriv_SumFac_Pyr::PhysDeriv_SumFac_Pyr ( vector< StdRegions::StdExpansionSharedPtr pCollExp,
CoalescedGeomDataSharedPtr  pGeomData,
StdRegions::FactorMap  factors 
)
inlineprivate

Definition at line 2228 of file PhysDeriv.cpp.

2231  : Operator(pCollExp, pGeomData, factors),
2232  m_nquad0(m_stdExp->GetNumPoints(0)),
2233  m_nquad1(m_stdExp->GetNumPoints(1)),
2234  m_nquad2(m_stdExp->GetNumPoints(2))
2235  {
2236  LibUtilities::PointsKeyVector PtsKey = m_stdExp->GetPointsKeys();
2237 
2238  m_coordim = pCollExp[0]->GetCoordim();
2239 
2240  m_derivFac = pGeomData->GetDerivFactors(pCollExp);
2241 
2242  const Array<OneD, const NekDouble> &z0 = m_stdExp->GetBasis(0)->GetZ();
2243  const Array<OneD, const NekDouble> &z1 = m_stdExp->GetBasis(1)->GetZ();
2244  const Array<OneD, const NekDouble> &z2 = m_stdExp->GetBasis(2)->GetZ();
2245  m_fac0 = Array<OneD, NekDouble>(m_nquad0 * m_nquad1 * m_nquad2);
2246  m_fac1 = Array<OneD, NekDouble>(m_nquad0 * m_nquad1 * m_nquad2);
2247  m_fac2 = Array<OneD, NekDouble>(m_nquad0 * m_nquad1 * m_nquad2);
2248 
2249  int nq0_nq1 = m_nquad0 * m_nquad1;
2250  for (int i = 0; i < m_nquad0; ++i)
2251  {
2252  for (int j = 0; j < m_nquad1; ++j)
2253  {
2254  int ifac = i + j * m_nquad0;
2255  for (int k = 0; k < m_nquad2; ++k)
2256  {
2257  m_fac0[ifac + k * nq0_nq1] = 2.0 / (1 - z2[k]);
2258  m_fac1[ifac + k * nq0_nq1] = 0.5 * (1 + z0[i]);
2259  m_fac2[ifac + k * nq0_nq1] = 0.5 * (1 + z1[j]);
2260  }
2261  }
2262  }
2263 
2264  m_Deriv0 = &((m_stdExp->GetBasis(0)->GetD())->GetPtr())[0];
2265  m_Deriv1 = &((m_stdExp->GetBasis(1)->GetD())->GetPtr())[0];
2266  m_Deriv2 = &((m_stdExp->GetBasis(2)->GetD())->GetPtr())[0];
2267 
2269  }
StdRegions::StdExpansionSharedPtr m_stdExp
Definition: Operator.h:165
Operator(std::vector< StdRegions::StdExpansionSharedPtr > pCollExp, std::shared_ptr< CoalescedGeomData > GeomData, StdRegions::FactorMap factors)
Constructor.
Definition: Operator.cpp:43
Array< TwoD, const NekDouble > m_derivFac
Definition: PhysDeriv.cpp:2215
std::vector< PointsKey > PointsKeyVector
Definition: Points.h:250

Member Function Documentation

◆ CheckFactors()

virtual void Nektar::Collections::PhysDeriv_SumFac_Pyr::CheckFactors ( StdRegions::FactorMap  factors,
int  coll_phys_offset 
)
inlineoverridevirtual

Check the validity of the supplied factor map.

Implements Nektar::Collections::Operator.

Definition at line 2207 of file PhysDeriv.cpp.

2209  {
2210  boost::ignore_unused(factors, coll_phys_offset);
2211  ASSERTL0(false, "Not valid for this operator.");
2212  }
#define ASSERTL0(condition, msg)
Definition: ErrorUtil.hpp:215

References ASSERTL0.

◆ operator()() [1/2]

void Nektar::Collections::PhysDeriv_SumFac_Pyr::operator() ( const Array< OneD, const NekDouble > &  input,
Array< OneD, NekDouble > &  output0,
Array< OneD, NekDouble > &  output1,
Array< OneD, NekDouble > &  output2,
Array< OneD, NekDouble > &  wsp 
)
inlinefinaloverridevirtual

Perform operation.

Implements Nektar::Collections::Operator.

Definition at line 2024 of file PhysDeriv.cpp.

2029  {
2030 
2031  int nPhys = m_stdExp->GetTotPoints();
2032  int ntot = m_numElmt * nPhys;
2033  Array<OneD, NekDouble> tmp0, tmp1, tmp2;
2034  Array<OneD, Array<OneD, NekDouble>> Diff(3);
2035  Array<OneD, Array<OneD, NekDouble>> out(3);
2036  out[0] = output0;
2037  out[1] = output1;
2038  out[2] = output2;
2039 
2040  for (int i = 0; i < 3; ++i)
2041  {
2042  Diff[i] = wsp + i * ntot;
2043  }
2044 
2045  // dEta0
2047  m_nquad0, 1.0, m_Deriv0, m_nquad0, &input[0], m_nquad0, 0.0,
2048  &Diff[0][0], m_nquad0);
2049 
2050  int cnt = 0;
2051  for (int i = 0; i < m_numElmt; ++i)
2052  {
2053 
2054  // dEta 1
2055  for (int j = 0; j < m_nquad2; ++j)
2056  {
2057  Blas::Dgemm('N', 'T', m_nquad0, m_nquad1, m_nquad1, 1.0,
2058  &input[i * nPhys + j * m_nquad0 * m_nquad1],
2059  m_nquad0, m_Deriv1, m_nquad1, 0.0,
2060  &Diff[1][i * nPhys + j * m_nquad0 * m_nquad1],
2061  m_nquad0);
2062  }
2063 
2064  // dEta 2
2065  Blas::Dgemm('N', 'T', m_nquad0 * m_nquad1, m_nquad2, m_nquad2, 1.0,
2066  &input[i * nPhys], m_nquad0 * m_nquad1, m_Deriv2,
2067  m_nquad2, 0.0, &Diff[2][i * nPhys],
2068  m_nquad0 * m_nquad1);
2069 
2070  // dxi0 = 2/(1-eta_2) d Eta_0
2071  Vmath::Vmul(nPhys, &m_fac0[0], 1, Diff[0].get() + cnt, 1,
2072  Diff[0].get() + cnt, 1);
2073 
2074  // dxi1 = 2/(1-eta_2) d Eta_1
2075  Vmath::Vmul(nPhys, &m_fac0[0], 1, Diff[1].get() + cnt, 1,
2076  Diff[1].get() + cnt, 1);
2077 
2078  // dxi2 = (1+eta0)/(1-eta_2) d Eta_0 + d/dEta2;
2079  Vmath::Vvtvp(nPhys, &m_fac1[0], 1, Diff[0].get() + cnt, 1,
2080  Diff[2].get() + cnt, 1, Diff[2].get() + cnt, 1);
2081 
2082  // dxi2 += (1+eta1)/(1-eta_2) d Eta_1
2083  Vmath::Vvtvp(nPhys, &m_fac2[0], 1, Diff[1].get() + cnt, 1,
2084  Diff[2].get() + cnt, 1, Diff[2].get() + cnt, 1);
2085  cnt += nPhys;
2086  }
2087 
2088  // calculate full derivative
2089  if (m_isDeformed)
2090  {
2091  for (int i = 0; i < m_coordim; ++i)
2092  {
2093  Vmath::Vmul(ntot, m_derivFac[i * 3], 1, Diff[0], 1, out[i], 1);
2094  for (int j = 1; j < 3; ++j)
2095  {
2096  Vmath::Vvtvp(ntot, m_derivFac[i * 3 + j], 1, Diff[j], 1,
2097  out[i], 1, out[i], 1);
2098  }
2099  }
2100  }
2101  else
2102  {
2103  Array<OneD, NekDouble> t;
2104  for (int e = 0; e < m_numElmt; ++e)
2105  {
2106  for (int i = 0; i < m_coordim; ++i)
2107  {
2108  Vmath::Smul(m_nqe, m_derivFac[i * 3][e],
2109  Diff[0] + e * m_nqe, 1, t = out[i] + e * m_nqe,
2110  1);
2111 
2112  for (int j = 1; j < 3; ++j)
2113  {
2114  Vmath::Svtvp(m_nqe, m_derivFac[i * 3 + j][e],
2115  Diff[j] + e * m_nqe, 1, out[i] + e * m_nqe,
2116  1, t = out[i] + e * m_nqe, 1);
2117  }
2118  }
2119  }
2120  }
2121  }
static void Dgemm(const char &transa, const char &transb, const int &m, const int &n, const int &k, const double &alpha, const double *a, const int &lda, const double *b, const int &ldb, const double &beta, double *c, const int &ldc)
BLAS level 3: Matrix-matrix multiply C = A x B where op(A)[m x k], op(B)[k x n], C[m x n] DGEMM perfo...
Definition: Blas.hpp:368
void Vmul(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Multiply vector z = x*y.
Definition: Vmath.cpp:209
void Svtvp(int n, const T alpha, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
svtvp (scalar times vector plus vector): z = alpha*x + y
Definition: Vmath.cpp:622
void Vvtvp(int n, const T *w, const int incw, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
vvtvp (vector times vector plus vector): z = w*x + y
Definition: Vmath.cpp:574
void Smul(int n, const T alpha, const T *x, const int incx, T *y, const int incy)
Scalar multiply y = alpha*x.
Definition: Vmath.cpp:248

References Blas::Dgemm(), Vmath::Smul(), Vmath::Svtvp(), Vmath::Vmul(), and Vmath::Vvtvp().

◆ operator()() [2/2]

void Nektar::Collections::PhysDeriv_SumFac_Pyr::operator() ( int  dir,
const Array< OneD, const NekDouble > &  input,
Array< OneD, NekDouble > &  output,
Array< OneD, NekDouble > &  wsp 
)
inlinefinaloverridevirtual

Implements Nektar::Collections::Operator.

Definition at line 2123 of file PhysDeriv.cpp.

2126  {
2127  int nPhys = m_stdExp->GetTotPoints();
2128  int ntot = m_numElmt * nPhys;
2129  Array<OneD, NekDouble> tmp0, tmp1, tmp2;
2130  Array<OneD, Array<OneD, NekDouble>> Diff(3);
2131 
2132  for (int i = 0; i < 3; ++i)
2133  {
2134  Diff[i] = wsp + i * ntot;
2135  }
2136 
2137  // dEta0
2139  m_nquad0, 1.0, m_Deriv0, m_nquad0, &input[0], m_nquad0, 0.0,
2140  &Diff[0][0], m_nquad0);
2141 
2142  int cnt = 0;
2143  for (int i = 0; i < m_numElmt; ++i)
2144  {
2145  // dEta 1
2146  for (int j = 0; j < m_nquad2; ++j)
2147  {
2148  Blas::Dgemm('N', 'T', m_nquad0, m_nquad1, m_nquad1, 1.0,
2149  &input[i * nPhys + j * m_nquad0 * m_nquad1],
2150  m_nquad0, m_Deriv1, m_nquad1, 0.0,
2151  &Diff[1][i * nPhys + j * m_nquad0 * m_nquad1],
2152  m_nquad0);
2153  }
2154 
2155  // dEta 2
2156  Blas::Dgemm('N', 'T', m_nquad0 * m_nquad1, m_nquad2, m_nquad2, 1.0,
2157  &input[i * nPhys], m_nquad0 * m_nquad1, m_Deriv2,
2158  m_nquad2, 0.0, &Diff[2][i * nPhys],
2159  m_nquad0 * m_nquad1);
2160 
2161  // dxi0 = 2/(1-eta_2) d Eta_0
2162  Vmath::Vmul(nPhys, &m_fac0[0], 1, Diff[0].get() + cnt, 1,
2163  Diff[0].get() + cnt, 1);
2164 
2165  // dxi1 = 2/(1-eta_2) d Eta_1
2166  Vmath::Vmul(nPhys, &m_fac0[0], 1, Diff[1].get() + cnt, 1,
2167  Diff[1].get() + cnt, 1);
2168 
2169  // dxi2 = (1+eta0)/(1-eta_2) d Eta_0 + d/dEta2;
2170  Vmath::Vvtvp(nPhys, &m_fac1[0], 1, Diff[0].get() + cnt, 1,
2171  Diff[2].get() + cnt, 1, Diff[2].get() + cnt, 1);
2172  // dxi2 = (1+eta1)/(1-eta_2) d Eta_1 + d/dEta2;
2173  Vmath::Vvtvp(nPhys, &m_fac2[0], 1, Diff[1].get() + cnt, 1,
2174  Diff[2].get() + cnt, 1, Diff[2].get() + cnt, 1);
2175  cnt += nPhys;
2176  }
2177 
2178  // calculate full derivative
2179  if (m_isDeformed)
2180  {
2181  // calculate full derivative
2182  Vmath::Vmul(ntot, m_derivFac[dir * 3], 1, Diff[0], 1, output, 1);
2183  for (int j = 1; j < 3; ++j)
2184  {
2185  Vmath::Vvtvp(ntot, m_derivFac[dir * 3 + j], 1, Diff[j], 1,
2186  output, 1, output, 1);
2187  }
2188  }
2189  else
2190  {
2191  Array<OneD, NekDouble> t;
2192  for (int e = 0; e < m_numElmt; ++e)
2193  {
2194  Vmath::Smul(m_nqe, m_derivFac[dir * 3][e], Diff[0] + e * m_nqe,
2195  1, t = output + e * m_nqe, 1);
2196 
2197  for (int j = 1; j < 3; ++j)
2198  {
2199  Vmath::Svtvp(m_nqe, m_derivFac[dir * 3 + j][e],
2200  Diff[j] + e * m_nqe, 1, output + e * m_nqe, 1,
2201  t = output + e * m_nqe, 1);
2202  }
2203  }
2204  }
2205  }

References Blas::Dgemm(), Vmath::Smul(), Vmath::Svtvp(), Vmath::Vmul(), and Vmath::Vvtvp().

Member Data Documentation

◆ m_coordim

int Nektar::Collections::PhysDeriv_SumFac_Pyr::m_coordim
protected

Definition at line 2216 of file PhysDeriv.cpp.

◆ m_Deriv0

NekDouble* Nektar::Collections::PhysDeriv_SumFac_Pyr::m_Deriv0
protected

Definition at line 2220 of file PhysDeriv.cpp.

◆ m_Deriv1

NekDouble* Nektar::Collections::PhysDeriv_SumFac_Pyr::m_Deriv1
protected

Definition at line 2221 of file PhysDeriv.cpp.

◆ m_Deriv2

NekDouble* Nektar::Collections::PhysDeriv_SumFac_Pyr::m_Deriv2
protected

Definition at line 2222 of file PhysDeriv.cpp.

◆ m_derivFac

Array<TwoD, const NekDouble> Nektar::Collections::PhysDeriv_SumFac_Pyr::m_derivFac
protected

Definition at line 2215 of file PhysDeriv.cpp.

◆ m_fac0

Array<OneD, NekDouble> Nektar::Collections::PhysDeriv_SumFac_Pyr::m_fac0
protected

Definition at line 2223 of file PhysDeriv.cpp.

◆ m_fac1

Array<OneD, NekDouble> Nektar::Collections::PhysDeriv_SumFac_Pyr::m_fac1
protected

Definition at line 2224 of file PhysDeriv.cpp.

◆ m_fac2

Array<OneD, NekDouble> Nektar::Collections::PhysDeriv_SumFac_Pyr::m_fac2
protected

Definition at line 2225 of file PhysDeriv.cpp.

◆ m_nquad0

const int Nektar::Collections::PhysDeriv_SumFac_Pyr::m_nquad0
protected

Definition at line 2217 of file PhysDeriv.cpp.

◆ m_nquad1

const int Nektar::Collections::PhysDeriv_SumFac_Pyr::m_nquad1
protected

Definition at line 2218 of file PhysDeriv.cpp.

◆ m_nquad2

const int Nektar::Collections::PhysDeriv_SumFac_Pyr::m_nquad2
protected

Definition at line 2219 of file PhysDeriv.cpp.