Nektar++
Public Member Functions | Protected Attributes | Private Member Functions | List of all members
Nektar::Collections::PhysDeriv_SumFac_Tet Class Referencefinal

Phys deriv operator using sum-factorisation (Tet) More...

Inheritance diagram for Nektar::Collections::PhysDeriv_SumFac_Tet:
[legend]

Public Member Functions

 ~PhysDeriv_SumFac_Tet () final
 
void operator() (const Array< OneD, const NekDouble > &input, Array< OneD, NekDouble > &output0, Array< OneD, NekDouble > &output1, Array< OneD, NekDouble > &output2, Array< OneD, NekDouble > &wsp) override final
 Perform operation. More...
 
void operator() (int dir, const Array< OneD, const NekDouble > &input, Array< OneD, NekDouble > &output, Array< OneD, NekDouble > &wsp) override final
 
virtual void CheckFactors (StdRegions::FactorMap factors, int coll_phys_offset) override
 Check the validity of the supplied factor map. More...
 
- Public Member Functions inherited from Nektar::Collections::Operator
 Operator (std::vector< StdRegions::StdExpansionSharedPtr > pCollExp, std::shared_ptr< CoalescedGeomData > GeomData, StdRegions::FactorMap factors)
 Constructor. More...
 
virtual COLLECTIONS_EXPORT ~Operator ()
 
unsigned int GetWspSize ()
 Get the size of the required workspace. More...
 
unsigned int GetNumElmt ()
 Get expansion pointer. More...
 
StdRegions::StdExpansionSharedPtr GetExpSharedPtr ()
 Get expansion pointer. More...
 

Protected Attributes

Array< TwoD, const NekDoublem_derivFac
 
int m_coordim
 
const int m_nquad0
 
const int m_nquad1
 
const int m_nquad2
 
NekDoublem_Deriv0
 
NekDoublem_Deriv1
 
NekDoublem_Deriv2
 
Array< OneD, NekDoublem_fac0
 
Array< OneD, NekDoublem_fac1
 
Array< OneD, NekDoublem_fac2
 
Array< OneD, NekDoublem_fac3
 
- Protected Attributes inherited from Nektar::Collections::Operator
bool m_isDeformed
 
StdRegions::StdExpansionSharedPtr m_stdExp
 
unsigned int m_numElmt
 
unsigned int m_nqe
 
unsigned int m_wspSize
 

Private Member Functions

 PhysDeriv_SumFac_Tet (vector< StdRegions::StdExpansionSharedPtr > pCollExp, CoalescedGeomDataSharedPtr pGeomData, StdRegions::FactorMap factors)
 

Detailed Description

Phys deriv operator using sum-factorisation (Tet)

Definition at line 1477 of file PhysDeriv.cpp.

Constructor & Destructor Documentation

◆ ~PhysDeriv_SumFac_Tet()

Nektar::Collections::PhysDeriv_SumFac_Tet::~PhysDeriv_SumFac_Tet ( )
inlinefinal

Definition at line 1482 of file PhysDeriv.cpp.

1483  {
1484  }

◆ PhysDeriv_SumFac_Tet()

Nektar::Collections::PhysDeriv_SumFac_Tet::PhysDeriv_SumFac_Tet ( vector< StdRegions::StdExpansionSharedPtr pCollExp,
CoalescedGeomDataSharedPtr  pGeomData,
StdRegions::FactorMap  factors 
)
inlineprivate

Definition at line 1709 of file PhysDeriv.cpp.

1712  : Operator(pCollExp, pGeomData, factors),
1713  m_nquad0(m_stdExp->GetNumPoints(0)),
1714  m_nquad1(m_stdExp->GetNumPoints(1)),
1715  m_nquad2(m_stdExp->GetNumPoints(2))
1716  {
1717  LibUtilities::PointsKeyVector PtsKey = m_stdExp->GetPointsKeys();
1718 
1719  m_coordim = pCollExp[0]->GetCoordim();
1720 
1721  m_derivFac = pGeomData->GetDerivFactors(pCollExp);
1722 
1723  m_Deriv0 = &((m_stdExp->GetBasis(0)->GetD())->GetPtr())[0];
1724  m_Deriv1 = &((m_stdExp->GetBasis(1)->GetD())->GetPtr())[0];
1725  m_Deriv2 = &((m_stdExp->GetBasis(2)->GetD())->GetPtr())[0];
1726 
1728 
1729  const Array<OneD, const NekDouble> &z0 = m_stdExp->GetBasis(0)->GetZ();
1730  const Array<OneD, const NekDouble> &z1 = m_stdExp->GetBasis(1)->GetZ();
1731  const Array<OneD, const NekDouble> &z2 = m_stdExp->GetBasis(2)->GetZ();
1732 
1733  m_fac0 = Array<OneD, NekDouble>(m_nquad0 * m_nquad1 * m_nquad2);
1734  m_fac1 = Array<OneD, NekDouble>(m_nquad0 * m_nquad1 * m_nquad2);
1735  m_fac2 = Array<OneD, NekDouble>(m_nquad0 * m_nquad1 * m_nquad2);
1736  m_fac3 = Array<OneD, NekDouble>(m_nquad0 * m_nquad1 * m_nquad2);
1737  // calculate 2.0/((1-eta_1)(1-eta_2))
1738  for (int i = 0; i < m_nquad0; ++i)
1739  {
1740  for (int j = 0; j < m_nquad1; ++j)
1741  {
1742  for (int k = 0; k < m_nquad2; ++k)
1743  {
1744 
1745  m_fac0[i + j * m_nquad0 + k * m_nquad0 * m_nquad1] =
1746  4.0 / ((1 - z1[j]) * (1 - z2[k]));
1747  m_fac1[i + j * m_nquad0 + k * m_nquad0 * m_nquad1] =
1748  2.0 * (1 + z0[i]) / ((1 - z1[j]) * (1 - z2[k]));
1749  m_fac2[i + j * m_nquad0 + k * m_nquad0 * m_nquad1] =
1750  2.0 / (1 - z2[k]);
1751  m_fac3[i + j * m_nquad0 + k * m_nquad0 * m_nquad1] =
1752  (1 + z1[j]) / (1 - z2[k]);
1753  }
1754  }
1755  }
1756  }
StdRegions::StdExpansionSharedPtr m_stdExp
Definition: Operator.h:165
Operator(std::vector< StdRegions::StdExpansionSharedPtr > pCollExp, std::shared_ptr< CoalescedGeomData > GeomData, StdRegions::FactorMap factors)
Constructor.
Definition: Operator.cpp:43
Array< TwoD, const NekDouble > m_derivFac
Definition: PhysDeriv.cpp:1695
std::vector< PointsKey > PointsKeyVector
Definition: Points.h:250

Member Function Documentation

◆ CheckFactors()

virtual void Nektar::Collections::PhysDeriv_SumFac_Tet::CheckFactors ( StdRegions::FactorMap  factors,
int  coll_phys_offset 
)
inlineoverridevirtual

Check the validity of the supplied factor map.

Implements Nektar::Collections::Operator.

Definition at line 1687 of file PhysDeriv.cpp.

1689  {
1690  boost::ignore_unused(factors, coll_phys_offset);
1691  ASSERTL0(false, "Not valid for this operator.");
1692  }
#define ASSERTL0(condition, msg)
Definition: ErrorUtil.hpp:215

References ASSERTL0.

◆ operator()() [1/2]

void Nektar::Collections::PhysDeriv_SumFac_Tet::operator() ( const Array< OneD, const NekDouble > &  input,
Array< OneD, NekDouble > &  output0,
Array< OneD, NekDouble > &  output1,
Array< OneD, NekDouble > &  output2,
Array< OneD, NekDouble > &  wsp 
)
inlinefinaloverridevirtual

Perform operation.

Implements Nektar::Collections::Operator.

Definition at line 1486 of file PhysDeriv.cpp.

1491  {
1492 
1493  int nPhys = m_stdExp->GetTotPoints();
1494  int ntot = m_numElmt * nPhys;
1495  Array<OneD, NekDouble> tmp0, tmp1, tmp2;
1496  Array<OneD, Array<OneD, NekDouble>> Diff(3);
1497  Array<OneD, Array<OneD, NekDouble>> out(3);
1498  out[0] = output0;
1499  out[1] = output1;
1500  out[2] = output2;
1501 
1502  for (int i = 0; i < 3; ++i)
1503  {
1504  Diff[i] = wsp + i * ntot;
1505  }
1506 
1507  // dEta0
1509  m_nquad0, 1.0, m_Deriv0, m_nquad0, &input[0], m_nquad0, 0.0,
1510  &Diff[0][0], m_nquad0);
1511 
1512  // dEta2
1513  for (int i = 0; i < m_numElmt; ++i)
1514  {
1515  Blas::Dgemm('N', 'T', m_nquad0 * m_nquad1, m_nquad2, m_nquad2, 1.0,
1516  &input[i * nPhys], m_nquad0 * m_nquad1, m_Deriv2,
1517  m_nquad2, 0.0, &Diff[2][i * nPhys],
1518  m_nquad0 * m_nquad1);
1519  }
1520 
1521  for (int i = 0; i < m_numElmt; ++i)
1522  {
1523 
1524  // dEta1
1525  for (int j = 0; j < m_nquad2; ++j)
1526  {
1527  Blas::Dgemm('N', 'T', m_nquad0, m_nquad1, m_nquad1, 1.0,
1528  &input[i * nPhys + j * m_nquad0 * m_nquad1],
1529  m_nquad0, m_Deriv1, m_nquad1, 0.0,
1530  &Diff[1][i * nPhys + j * m_nquad0 * m_nquad1],
1531  m_nquad0);
1532  }
1533 
1534  // dxi2 = (1 + eta_1)/(1 -eta_2)*dEta1 + dEta2
1535  Vmath::Vvtvp(nPhys, m_fac3.get(), 1, Diff[1].get() + i * nPhys, 1,
1536  Diff[2].get() + i * nPhys, 1,
1537  Diff[2].get() + i * nPhys, 1);
1538 
1539  // dxi1 = 2/(1 - eta_2) dEta1
1540  Vmath::Vmul(nPhys, m_fac2.get(), 1, Diff[1].get() + i * nPhys, 1,
1541  Diff[1].get() + i * nPhys, 1);
1542 
1543  // dxi1 = 2.0(1+eta_0)/((1-eta_1)(1-eta_2)) dEta0 + dxi1
1544  Vmath::Vvtvp(nPhys, m_fac1.get(), 1, Diff[0].get() + i * nPhys, 1,
1545  Diff[1].get() + i * nPhys, 1,
1546  Diff[1].get() + i * nPhys, 1);
1547 
1548  // dxi2 = 2.0(1+eta_0)/((1-eta_1)(1-eta_2)) dEta0 + dxi2
1549  Vmath::Vvtvp(nPhys, m_fac1.get(), 1, Diff[0].get() + i * nPhys, 1,
1550  Diff[2].get() + i * nPhys, 1,
1551  Diff[2].get() + i * nPhys, 1);
1552 
1553  // dxi0 = 4.0/((1-eta_1)(1-eta_2)) dEta0
1554  Vmath::Vmul(nPhys, m_fac0.get(), 1, Diff[0].get() + i * nPhys, 1,
1555  Diff[0].get() + i * nPhys, 1);
1556  }
1557 
1558  // calculate full derivative
1559  if (m_isDeformed)
1560  {
1561  for (int i = 0; i < m_coordim; ++i)
1562  {
1563  Vmath::Vmul(ntot, m_derivFac[i * 3], 1, Diff[0], 1, out[i], 1);
1564  for (int j = 1; j < 3; ++j)
1565  {
1566  Vmath::Vvtvp(ntot, m_derivFac[i * 3 + j], 1, Diff[j], 1,
1567  out[i], 1, out[i], 1);
1568  }
1569  }
1570  }
1571  else
1572  {
1573  Array<OneD, NekDouble> t;
1574  for (int e = 0; e < m_numElmt; ++e)
1575  {
1576  for (int i = 0; i < m_coordim; ++i)
1577  {
1578  Vmath::Smul(m_nqe, m_derivFac[i * 3][e],
1579  Diff[0] + e * m_nqe, 1, t = out[i] + e * m_nqe,
1580  1);
1581 
1582  for (int j = 1; j < 3; ++j)
1583  {
1584  Vmath::Svtvp(m_nqe, m_derivFac[i * 3 + j][e],
1585  Diff[j] + e * m_nqe, 1, out[i] + e * m_nqe,
1586  1, t = out[i] + e * m_nqe, 1);
1587  }
1588  }
1589  }
1590  }
1591  }
static void Dgemm(const char &transa, const char &transb, const int &m, const int &n, const int &k, const double &alpha, const double *a, const int &lda, const double *b, const int &ldb, const double &beta, double *c, const int &ldc)
BLAS level 3: Matrix-matrix multiply C = A x B where op(A)[m x k], op(B)[k x n], C[m x n] DGEMM perfo...
Definition: Blas.hpp:368
void Vmul(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Multiply vector z = x*y.
Definition: Vmath.cpp:209
void Svtvp(int n, const T alpha, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
svtvp (scalar times vector plus vector): z = alpha*x + y
Definition: Vmath.cpp:622
void Vvtvp(int n, const T *w, const int incw, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
vvtvp (vector times vector plus vector): z = w*x + y
Definition: Vmath.cpp:574
void Smul(int n, const T alpha, const T *x, const int incx, T *y, const int incy)
Scalar multiply y = alpha*x.
Definition: Vmath.cpp:248

References Blas::Dgemm(), Vmath::Smul(), Vmath::Svtvp(), Vmath::Vmul(), and Vmath::Vvtvp().

◆ operator()() [2/2]

void Nektar::Collections::PhysDeriv_SumFac_Tet::operator() ( int  dir,
const Array< OneD, const NekDouble > &  input,
Array< OneD, NekDouble > &  output,
Array< OneD, NekDouble > &  wsp 
)
inlinefinaloverridevirtual

Implements Nektar::Collections::Operator.

Definition at line 1593 of file PhysDeriv.cpp.

1596  {
1597  int nPhys = m_stdExp->GetTotPoints();
1598  int ntot = m_numElmt * nPhys;
1599  Array<OneD, NekDouble> tmp0, tmp1, tmp2;
1600  Array<OneD, Array<OneD, NekDouble>> Diff(3);
1601 
1602  for (int i = 0; i < 3; ++i)
1603  {
1604  Diff[i] = wsp + i * ntot;
1605  }
1606 
1607  // dEta0
1609  m_nquad0, 1.0, m_Deriv0, m_nquad0, &input[0], m_nquad0, 0.0,
1610  &Diff[0][0], m_nquad0);
1611 
1612  // dEta2
1613  for (int i = 0; i < m_numElmt; ++i)
1614  {
1615  Blas::Dgemm('N', 'T', m_nquad0 * m_nquad1, m_nquad2, m_nquad2, 1.0,
1616  &input[i * nPhys], m_nquad0 * m_nquad1, m_Deriv2,
1617  m_nquad2, 0.0, &Diff[2][i * nPhys],
1618  m_nquad0 * m_nquad1);
1619  }
1620 
1621  for (int i = 0; i < m_numElmt; ++i)
1622  {
1623 
1624  // dEta1
1625  for (int j = 0; j < m_nquad2; ++j)
1626  {
1627  Blas::Dgemm('N', 'T', m_nquad0, m_nquad1, m_nquad1, 1.0,
1628  &input[i * nPhys + j * m_nquad0 * m_nquad1],
1629  m_nquad0, m_Deriv1, m_nquad1, 0.0,
1630  &Diff[1][i * nPhys + j * m_nquad0 * m_nquad1],
1631  m_nquad0);
1632  }
1633 
1634  // dxi2 = (1 + eta_1)/(1 -eta_2)*dEta1 + dEta2
1635  Vmath::Vvtvp(nPhys, m_fac3.get(), 1, Diff[1].get() + i * nPhys, 1,
1636  Diff[2].get() + i * nPhys, 1,
1637  Diff[2].get() + i * nPhys, 1);
1638 
1639  // dxi1 = 2/(1 - eta_2) dEta1
1640  Vmath::Vmul(nPhys, m_fac2.get(), 1, Diff[1].get() + i * nPhys, 1,
1641  Diff[1].get() + i * nPhys, 1);
1642 
1643  // dxi1 = 2.0(1+eta_0)/((1-eta_1)(1-eta_2)) dEta0 + dxi1
1644  Vmath::Vvtvp(nPhys, m_fac1.get(), 1, Diff[0].get() + i * nPhys, 1,
1645  Diff[1].get() + i * nPhys, 1,
1646  Diff[1].get() + i * nPhys, 1);
1647 
1648  // dxi2 = 2.0(1+eta_0)/((1-eta_1)(1-eta_2)) dEta0 + dxi2
1649  Vmath::Vvtvp(nPhys, m_fac1.get(), 1, Diff[0].get() + i * nPhys, 1,
1650  Diff[2].get() + i * nPhys, 1,
1651  Diff[2].get() + i * nPhys, 1);
1652 
1653  // dxi0 = 4.0/((1-eta_1)(1-eta_2)) dEta0
1654  Vmath::Vmul(nPhys, m_fac0.get(), 1, Diff[0].get() + i * nPhys, 1,
1655  Diff[0].get() + i * nPhys, 1);
1656  }
1657 
1658  // calculate full derivative
1659  if (m_isDeformed)
1660  {
1661  // calculate full derivative
1662  Vmath::Vmul(ntot, m_derivFac[dir * 3], 1, Diff[0], 1, output, 1);
1663  for (int j = 1; j < 3; ++j)
1664  {
1665  Vmath::Vvtvp(ntot, m_derivFac[dir * 3 + j], 1, Diff[j], 1,
1666  output, 1, output, 1);
1667  }
1668  }
1669  else
1670  {
1671  Array<OneD, NekDouble> t;
1672  for (int e = 0; e < m_numElmt; ++e)
1673  {
1674  Vmath::Smul(m_nqe, m_derivFac[dir * 3][e], Diff[0] + e * m_nqe,
1675  1, t = output + e * m_nqe, 1);
1676 
1677  for (int j = 1; j < 3; ++j)
1678  {
1679  Vmath::Svtvp(m_nqe, m_derivFac[dir * 3 + j][e],
1680  Diff[j] + e * m_nqe, 1, output + e * m_nqe, 1,
1681  t = output + e * m_nqe, 1);
1682  }
1683  }
1684  }
1685  }

References Blas::Dgemm(), Vmath::Smul(), Vmath::Svtvp(), Vmath::Vmul(), and Vmath::Vvtvp().

Member Data Documentation

◆ m_coordim

int Nektar::Collections::PhysDeriv_SumFac_Tet::m_coordim
protected

Definition at line 1696 of file PhysDeriv.cpp.

◆ m_Deriv0

NekDouble* Nektar::Collections::PhysDeriv_SumFac_Tet::m_Deriv0
protected

Definition at line 1700 of file PhysDeriv.cpp.

◆ m_Deriv1

NekDouble* Nektar::Collections::PhysDeriv_SumFac_Tet::m_Deriv1
protected

Definition at line 1701 of file PhysDeriv.cpp.

◆ m_Deriv2

NekDouble* Nektar::Collections::PhysDeriv_SumFac_Tet::m_Deriv2
protected

Definition at line 1702 of file PhysDeriv.cpp.

◆ m_derivFac

Array<TwoD, const NekDouble> Nektar::Collections::PhysDeriv_SumFac_Tet::m_derivFac
protected

Definition at line 1695 of file PhysDeriv.cpp.

◆ m_fac0

Array<OneD, NekDouble> Nektar::Collections::PhysDeriv_SumFac_Tet::m_fac0
protected

Definition at line 1703 of file PhysDeriv.cpp.

◆ m_fac1

Array<OneD, NekDouble> Nektar::Collections::PhysDeriv_SumFac_Tet::m_fac1
protected

Definition at line 1704 of file PhysDeriv.cpp.

◆ m_fac2

Array<OneD, NekDouble> Nektar::Collections::PhysDeriv_SumFac_Tet::m_fac2
protected

Definition at line 1705 of file PhysDeriv.cpp.

◆ m_fac3

Array<OneD, NekDouble> Nektar::Collections::PhysDeriv_SumFac_Tet::m_fac3
protected

Definition at line 1706 of file PhysDeriv.cpp.

◆ m_nquad0

const int Nektar::Collections::PhysDeriv_SumFac_Tet::m_nquad0
protected

Definition at line 1697 of file PhysDeriv.cpp.

◆ m_nquad1

const int Nektar::Collections::PhysDeriv_SumFac_Tet::m_nquad1
protected

Definition at line 1698 of file PhysDeriv.cpp.

◆ m_nquad2

const int Nektar::Collections::PhysDeriv_SumFac_Tet::m_nquad2
protected

Definition at line 1699 of file PhysDeriv.cpp.