Nektar++
Public Member Functions | Protected Member Functions | Protected Attributes | List of all members
Nektar::LibUtilities::NodalUtilTriangle Class Reference

Specialisation of the NodalUtil class to support nodal triangular elements. More...

#include <NodalUtil.h>

Inheritance diagram for Nektar::LibUtilities::NodalUtilTriangle:
[legend]

Public Member Functions

 NodalUtilTriangle (int degree, Array< OneD, NekDouble > r, Array< OneD, NekDouble > s)
 Construct the nodal utility class for a triangle. More...
 
virtual ~NodalUtilTriangle ()
 
- Public Member Functions inherited from Nektar::LibUtilities::NodalUtil
virtual ~NodalUtil ()=default
 
NekVector< NekDoubleGetWeights ()
 Obtain the integration weights for the given nodal distribution. More...
 
SharedMatrix GetVandermonde ()
 Return the Vandermonde matrix for the nodal distribution. More...
 
SharedMatrix GetVandermondeForDeriv (int dir)
 Return the Vandermonde matrix of the derivative of the basis functions for the nodal distribution. More...
 
SharedMatrix GetDerivMatrix (int dir)
 Return the derivative matrix for the nodal distribution. More...
 
SharedMatrix GetInterpolationMatrix (Array< OneD, Array< OneD, NekDouble >> &xi)
 Construct the interpolation matrix used to evaluate the basis at the points xi inside the element. More...
 

Protected Member Functions

virtual NekVector< NekDoublev_OrthoBasis (const int mode) override
 Return the value of the modal functions for the triangular element at the nodal points m_xi for a given mode. More...
 
virtual NekVector< NekDoublev_OrthoBasisDeriv (const int dir, const int mode) override
 Return the value of the derivative of the modal functions for the triangular element at the nodal points m_xi for a given mode. More...
 
virtual std::shared_ptr< NodalUtilv_CreateUtil (Array< OneD, Array< OneD, NekDouble >> &xi) override
 Construct a NodalUtil object of the appropriate element type for a given set of points. More...
 
virtual NekDouble v_ModeZeroIntegral () override
 Return the value of the integral of the zero-th mode for this element. More...
 
virtual int v_NumModes () override
 Calculate the number of degrees of freedom for this element. More...
 
- Protected Member Functions inherited from Nektar::LibUtilities::NodalUtil
 NodalUtil (int degree, int dim)
 Set up the NodalUtil object. More...
 

Protected Attributes

std::vector< std::pair< int, int > > m_ordering
 Mapping from the \( (i,j) \) indexing of the basis to a continuous ordering. More...
 
Array< OneD, Array< OneD, NekDouble > > m_eta
 Collapsed coordinates \( (\eta_1, \eta_2) \) of the nodal points. More...
 
- Protected Attributes inherited from Nektar::LibUtilities::NodalUtil
int m_dim
 Dimension of the nodal element. More...
 
int m_degree
 Degree of the nodal element. More...
 
int m_numPoints
 Total number of nodal points. More...
 
Array< OneD, Array< OneD, NekDouble > > m_xi
 Coordinates of the nodal points defining the basis. More...
 

Detailed Description

Specialisation of the NodalUtil class to support nodal triangular elements.

Definition at line 169 of file NodalUtil.h.

Constructor & Destructor Documentation

◆ NodalUtilTriangle()

Nektar::LibUtilities::NodalUtilTriangle::NodalUtilTriangle ( int  degree,
Array< OneD, NekDouble r,
Array< OneD, NekDouble s 
)

Construct the nodal utility class for a triangle.

The constructor of this class sets up two member variables used in the evaluation of the orthogonal basis:

  • NodalUtilTriangle::m_eta is used to construct the collapsed coordinate locations of the nodal points \( (\eta_1, \eta_2) \) inside the square \([-1,1]^2\) on which the orthogonal basis functions are defined.
  • NodalUtilTriangle::m_ordering constructs a mapping from the index set \( I = \{ (i,j)\ |\ 0\leq i,j \leq P, i+j \leq P \}\) to an ordering \( 0 \leq m(ij) \leq (P+1)(P+2)/2 \) that defines the monomials \( \xi_1^i \xi_2^j \) that span the triangular space. This is then used to calculate which \( (i,j) \) pair corresponding to a column of the Vandermonde matrix when calculating the orthogonal polynomials.
Parameters
degreePolynomial order of this nodal triangle.
r\( \xi_1 \)-coordinates of nodal points in the standard element.
s\( \xi_2 \)-coordinates of nodal points in the standard element.

Definition at line 238 of file NodalUtil.cpp.

240  : NodalUtil(degree, 2), m_eta(2)
241 {
242  // Set up parent variables.
243  m_numPoints = r.size();
244  m_xi[0] = r;
245  m_xi[1] = s;
246 
247  // Construct a mapping (i,j) -> m from the triangular tensor product space
248  // (i,j) to a single ordering m.
249  for (int i = 0; i <= m_degree; ++i)
250  {
251  for (int j = 0; j <= m_degree - i; ++j)
252  {
253  m_ordering.push_back(std::make_pair(i, j));
254  }
255  }
256 
257  // Calculate collapsed coordinates from r/s values
258  m_eta[0] = Array<OneD, NekDouble>(m_numPoints);
259  m_eta[1] = Array<OneD, NekDouble>(m_numPoints);
260 
261  for (int i = 0; i < m_numPoints; ++i)
262  {
263  if (fabs(m_xi[1][i] - 1.0) < NekConstants::kNekZeroTol)
264  {
265  m_eta[0][i] = -1.0;
266  m_eta[1][i] = 1.0;
267  }
268  else
269  {
270  m_eta[0][i] = 2 * (1 + m_xi[0][i]) / (1 - m_xi[1][i]) - 1.0;
271  m_eta[1][i] = m_xi[1][i];
272  }
273  }
274 }
int m_degree
Degree of the nodal element.
Definition: NodalUtil.h:107
NodalUtil(int degree, int dim)
Set up the NodalUtil object.
Definition: NodalUtil.h:100
int m_numPoints
Total number of nodal points.
Definition: NodalUtil.h:109
Array< OneD, Array< OneD, NekDouble > > m_xi
Coordinates of the nodal points defining the basis.
Definition: NodalUtil.h:111
std::vector< std::pair< int, int > > m_ordering
Mapping from the indexing of the basis to a continuous ordering.
Definition: NodalUtil.h:182
Array< OneD, Array< OneD, NekDouble > > m_eta
Collapsed coordinates of the nodal points.
Definition: NodalUtil.h:185
static const NekDouble kNekZeroTol

References Nektar::NekConstants::kNekZeroTol, Nektar::LibUtilities::NodalUtil::m_degree, m_eta, Nektar::LibUtilities::NodalUtil::m_numPoints, m_ordering, and Nektar::LibUtilities::NodalUtil::m_xi.

◆ ~NodalUtilTriangle()

virtual Nektar::LibUtilities::NodalUtilTriangle::~NodalUtilTriangle ( )
inlinevirtual

Definition at line 175 of file NodalUtil.h.

176  {
177  }

Member Function Documentation

◆ v_CreateUtil()

virtual std::shared_ptr<NodalUtil> Nektar::LibUtilities::NodalUtilTriangle::v_CreateUtil ( Array< OneD, Array< OneD, NekDouble >> &  xi)
inlineoverrideprotectedvirtual

Construct a NodalUtil object of the appropriate element type for a given set of points.

This function is used inside NodalUtil::GetInterpolationMatrix so that the (potentially non-square) Vandermonde matrix can be constructed to create the interpolation matrix at an arbitrary set of points in the domain.

Parameters
xiDistribution of nodal points to create utility with.

Implements Nektar::LibUtilities::NodalUtil.

Definition at line 191 of file NodalUtil.h.

193  {
195  m_degree, xi[0], xi[1]);
196  }
static std::shared_ptr< DataType > AllocateSharedPtr(const Args &...args)
Allocate a shared pointer from the memory pool.

References Nektar::MemoryManager< DataType >::AllocateSharedPtr(), and Nektar::LibUtilities::NodalUtil::m_degree.

◆ v_ModeZeroIntegral()

virtual NekDouble Nektar::LibUtilities::NodalUtilTriangle::v_ModeZeroIntegral ( )
inlineoverrideprotectedvirtual

Return the value of the integral of the zero-th mode for this element.

Note that for the orthogonal basis under consideration, all modes integrate to zero asides from the zero-th mode. This function is used in NodalUtil::GetWeights to determine integration weights.

Implements Nektar::LibUtilities::NodalUtil.

Definition at line 198 of file NodalUtil.h.

199  {
200  return 2.0 * sqrt(2.0);
201  }
scalarT< T > sqrt(scalarT< T > in)
Definition: scalar.hpp:294

References tinysimd::sqrt().

◆ v_NumModes()

virtual int Nektar::LibUtilities::NodalUtilTriangle::v_NumModes ( )
inlineoverrideprotectedvirtual

Calculate the number of degrees of freedom for this element.

Implements Nektar::LibUtilities::NodalUtil.

Definition at line 203 of file NodalUtil.h.

204  {
205  return (m_degree + 1) * (m_degree + 2) / 2;
206  }

References Nektar::LibUtilities::NodalUtil::m_degree.

◆ v_OrthoBasis()

NekVector< NekDouble > Nektar::LibUtilities::NodalUtilTriangle::v_OrthoBasis ( const int  mode)
overrideprotectedvirtual

Return the value of the modal functions for the triangular element at the nodal points m_xi for a given mode.

In a triangle, we use the orthogonal basis

\[ \psi_{m(ij)} = \sqrt{2} P^{(0,0)}_i(\xi_1) P_j^{(2i+1,0)}(\xi_2) (1-\xi_2)^i \]

where \( m(ij) \) is the mapping defined in NodalUtilTriangle::m_ordering and \( J_n^{(\alpha,\beta)}(z) \) denotes the standard Jacobi polynomial.

Parameters
modeThe mode of the orthogonal basis to evaluate.
Returns
Vector containing orthogonal basis evaluated at the points m_xi.

Implements Nektar::LibUtilities::NodalUtil.

Definition at line 293 of file NodalUtil.cpp.

294 {
295  std::vector<NekDouble> jacobi_i(m_numPoints), jacobi_j(m_numPoints);
296  std::pair<int, int> modes = m_ordering[mode];
297 
298  // Calculate Jacobi polynomials
299  Polylib::jacobfd(m_numPoints, &m_eta[0][0], &jacobi_i[0], NULL, modes.first,
300  0.0, 0.0);
301  Polylib::jacobfd(m_numPoints, &m_eta[1][0], &jacobi_j[0], NULL,
302  modes.second, 2.0 * modes.first + 1.0, 0.0);
303 
304  NekVector<NekDouble> ret(m_numPoints);
305  NekDouble sqrt2 = sqrt(2.0);
306 
307  for (int i = 0; i < m_numPoints; ++i)
308  {
309  ret[i] = sqrt2 * jacobi_i[i] * jacobi_j[i] *
310  pow(1.0 - m_eta[1][i], modes.first);
311  }
312 
313  return ret;
314 }
double NekDouble
void jacobfd(const int np, const double *z, double *poly_in, double *polyd, const int n, const double alpha, const double beta)
Routine to calculate Jacobi polynomials, , and their first derivative, .
Definition: Polylib.cpp:1181

References Polylib::jacobfd(), m_eta, Nektar::LibUtilities::NodalUtil::m_numPoints, m_ordering, CG_Iterations::modes, and tinysimd::sqrt().

◆ v_OrthoBasisDeriv()

NekVector< NekDouble > Nektar::LibUtilities::NodalUtilTriangle::v_OrthoBasisDeriv ( const int  dir,
const int  mode 
)
overrideprotectedvirtual

Return the value of the derivative of the modal functions for the triangular element at the nodal points m_xi for a given mode.

Note that this routine must use the chain rule combined with the collapsed coordinate derivatives as described in Sherwin & Karniadakis (2nd edition), pg 150.

Parameters
dirCoordinate direction in which to evaluate the derivative.
modeThe mode of the orthogonal basis to evaluate.
Returns
Vector containing the derivative of the orthogonal basis evaluated at the points m_xi.

Implements Nektar::LibUtilities::NodalUtil.

Definition at line 330 of file NodalUtil.cpp.

332 {
333  std::vector<NekDouble> jacobi_i(m_numPoints), jacobi_j(m_numPoints);
334  std::vector<NekDouble> jacobi_di(m_numPoints), jacobi_dj(m_numPoints);
335  std::pair<int, int> modes = m_ordering[mode];
336 
337  // Calculate Jacobi polynomials and their derivatives. Note that we use both
338  // jacobfd and jacobd since jacobfd is only valid for derivatives in the
339  // open interval (-1,1).
340  Polylib::jacobfd(m_numPoints, &m_eta[0][0], &jacobi_i[0], NULL, modes.first,
341  0.0, 0.0);
342  Polylib::jacobfd(m_numPoints, &m_eta[1][0], &jacobi_j[0], NULL,
343  modes.second, 2.0 * modes.first + 1.0, 0.0);
344  Polylib::jacobd(m_numPoints, &m_eta[0][0], &jacobi_di[0], modes.first, 0.0,
345  0.0);
346  Polylib::jacobd(m_numPoints, &m_eta[1][0], &jacobi_dj[0], modes.second,
347  2.0 * modes.first + 1.0, 0.0);
348 
349  NekVector<NekDouble> ret(m_numPoints);
350  NekDouble sqrt2 = sqrt(2.0);
351 
352  if (dir == 0)
353  {
354  // d/d(\xi_1) = 2/(1-\eta_2) d/d(\eta_1)
355  for (int i = 0; i < m_numPoints; ++i)
356  {
357  ret[i] = 2.0 * sqrt2 * jacobi_di[i] * jacobi_j[i];
358  if (modes.first > 0)
359  {
360  ret[i] *= pow(1.0 - m_eta[1][i], modes.first - 1.0);
361  }
362  }
363  }
364  else
365  {
366  // d/d(\xi_2) = 2(1+\eta_1)/(1-\eta_2) d/d(\eta_1) + d/d(eta_2)
367  for (int i = 0; i < m_numPoints; ++i)
368  {
369  ret[i] = (1 + m_eta[0][i]) * sqrt2 * jacobi_di[i] * jacobi_j[i];
370  if (modes.first > 0)
371  {
372  ret[i] *= pow(1.0 - m_eta[1][i], modes.first - 1.0);
373  }
374 
375  NekDouble tmp = jacobi_dj[i] * pow(1.0 - m_eta[1][i], modes.first);
376  if (modes.first > 0)
377  {
378  tmp -= modes.first * jacobi_j[i] *
379  pow(1.0 - m_eta[1][i], modes.first - 1);
380  }
381 
382  ret[i] += sqrt2 * jacobi_i[i] * tmp;
383  }
384  }
385 
386  return ret;
387 }
void jacobd(const int np, const double *z, double *polyd, const int n, const double alpha, const double beta)
Calculate the derivative of Jacobi polynomials.
Definition: Polylib.cpp:1293

References Polylib::jacobd(), Polylib::jacobfd(), m_eta, Nektar::LibUtilities::NodalUtil::m_numPoints, m_ordering, CG_Iterations::modes, and tinysimd::sqrt().

Member Data Documentation

◆ m_eta

Array<OneD, Array<OneD, NekDouble> > Nektar::LibUtilities::NodalUtilTriangle::m_eta
protected

Collapsed coordinates \( (\eta_1, \eta_2) \) of the nodal points.

Definition at line 185 of file NodalUtil.h.

Referenced by NodalUtilTriangle(), v_OrthoBasis(), and v_OrthoBasisDeriv().

◆ m_ordering

std::vector<std::pair<int, int> > Nektar::LibUtilities::NodalUtilTriangle::m_ordering
protected

Mapping from the \( (i,j) \) indexing of the basis to a continuous ordering.

Definition at line 182 of file NodalUtil.h.

Referenced by NodalUtilTriangle(), v_OrthoBasis(), and v_OrthoBasisDeriv().