Nektar++
Public Member Functions | Public Attributes | Protected Member Functions | Protected Attributes | List of all members
Nektar::SolverUtils::RiemannSolver Class Referenceabstract

The RiemannSolver class provides an abstract interface under which solvers for various Riemann problems can be implemented. More...

#include <RiemannSolver.h>

Inheritance diagram for Nektar::SolverUtils::RiemannSolver:
[legend]

Public Member Functions

SOLVER_UTILS_EXPORT void Solve (const int nDim, const Array< OneD, const Array< OneD, NekDouble >> &Fwd, const Array< OneD, const Array< OneD, NekDouble >> &Bwd, Array< OneD, Array< OneD, NekDouble >> &flux)
 Perform the Riemann solve given the forwards and backwards spaces. More...
 
template<typename FuncPointerT , typename ObjectPointerT >
void SetScalar (std::string name, FuncPointerT func, ObjectPointerT obj)
 
void SetScalar (std::string name, RSScalarFuncType fp)
 
template<typename FuncPointerT , typename ObjectPointerT >
void SetVector (std::string name, FuncPointerT func, ObjectPointerT obj)
 
void SetVector (std::string name, RSVecFuncType fp)
 
template<typename FuncPointerT , typename ObjectPointerT >
void SetParam (std::string name, FuncPointerT func, ObjectPointerT obj)
 
void SetParam (std::string name, RSParamFuncType fp)
 
template<typename FuncPointerT , typename ObjectPointerT >
void SetAuxScal (std::string name, FuncPointerT func, ObjectPointerT obj)
 
template<typename FuncPointerT , typename ObjectPointerT >
void SetAuxVec (std::string name, FuncPointerT func, ObjectPointerT obj)
 
void SetAuxVec (std::string name, RSVecFuncType fp)
 
std::map< std::string, RSScalarFuncType > & GetScalars ()
 
std::map< std::string, RSVecFuncType > & GetVectors ()
 
std::map< std::string, RSParamFuncType > & GetParams ()
 
SOLVER_UTILS_EXPORT void CalcFluxJacobian (const int nDim, const Array< OneD, const Array< OneD, NekDouble >> &Fwd, const Array< OneD, const Array< OneD, NekDouble >> &Bwd, DNekBlkMatSharedPtr &FJac, DNekBlkMatSharedPtr &BJac)
 Calculate the flux jacobian of Fwd and Bwd. More...
 

Public Attributes

int m_spacedim
 

Protected Member Functions

SOLVER_UTILS_EXPORT RiemannSolver ()
 
SOLVER_UTILS_EXPORT RiemannSolver (const LibUtilities::SessionReaderSharedPtr &pSession)
 
virtual SOLVER_UTILS_EXPORT ~RiemannSolver ()
 
virtual void v_Solve (const int nDim, const Array< OneD, const Array< OneD, NekDouble >> &Fwd, const Array< OneD, const Array< OneD, NekDouble >> &Bwd, Array< OneD, Array< OneD, NekDouble >> &flux)=0
 
SOLVER_UTILS_EXPORT void GenerateRotationMatrices (const Array< OneD, const Array< OneD, NekDouble >> &normals)
 Generate rotation matrices for 3D expansions. More...
 
void FromToRotation (Array< OneD, const NekDouble > &from, Array< OneD, const NekDouble > &to, NekDouble *mat)
 A function for creating a rotation matrix that rotates a vector from into another vector to. More...
 
SOLVER_UTILS_EXPORT void rotateToNormal (const Array< OneD, const Array< OneD, NekDouble >> &inarray, const Array< OneD, const Array< OneD, NekDouble >> &normals, const Array< OneD, const Array< OneD, NekDouble >> &vecLocs, Array< OneD, Array< OneD, NekDouble >> &outarray)
 Rotate a vector field to trace normal. More...
 
SOLVER_UTILS_EXPORT void rotateFromNormal (const Array< OneD, const Array< OneD, NekDouble >> &inarray, const Array< OneD, const Array< OneD, NekDouble >> &normals, const Array< OneD, const Array< OneD, NekDouble >> &vecLocs, Array< OneD, Array< OneD, NekDouble >> &outarray)
 Rotate a vector field from trace normal. More...
 
SOLVER_UTILS_EXPORT bool CheckScalars (std::string name)
 Determine whether a scalar has been defined in m_scalars. More...
 
SOLVER_UTILS_EXPORT bool CheckVectors (std::string name)
 Determine whether a vector has been defined in m_vectors. More...
 
SOLVER_UTILS_EXPORT bool CheckParams (std::string name)
 Determine whether a parameter has been defined in m_params. More...
 
SOLVER_UTILS_EXPORT bool CheckAuxScal (std::string name)
 Determine whether a scalar has been defined in m_auxScal. More...
 
SOLVER_UTILS_EXPORT bool CheckAuxVec (std::string name)
 Determine whether a vector has been defined in m_auxVec. More...
 
virtual SOLVER_UTILS_EXPORT void v_CalcFluxJacobian (const int nDim, const Array< OneD, const Array< OneD, NekDouble >> &Fwd, const Array< OneD, const Array< OneD, NekDouble >> &Bwd, const Array< OneD, const Array< OneD, NekDouble >> &normals, DNekBlkMatSharedPtr &FJac, DNekBlkMatSharedPtr &BJac)
 

Protected Attributes

bool m_requiresRotation
 Indicates whether the Riemann solver requires a rotation to be applied to the velocity fields. More...
 
std::map< std::string, RSScalarFuncTypem_scalars
 Map of scalar function types. More...
 
std::map< std::string, RSVecFuncTypem_vectors
 Map of vector function types. More...
 
std::map< std::string, RSParamFuncTypem_params
 Map of parameter function types. More...
 
std::map< std::string, RSScalarFuncTypem_auxScal
 Map of auxiliary scalar function types. More...
 
std::map< std::string, RSVecFuncTypem_auxVec
 Map of auxiliary vector function types. More...
 
Array< OneD, Array< OneD, NekDouble > > m_rotMat
 Rotation matrices for each trace quadrature point. More...
 
Array< OneD, Array< OneD, Array< OneD, NekDouble > > > m_rotStorage
 Rotation storage. More...
 

Detailed Description

The RiemannSolver class provides an abstract interface under which solvers for various Riemann problems can be implemented.

Definition at line 57 of file RiemannSolver.h.

Constructor & Destructor Documentation

◆ RiemannSolver() [1/2]

Nektar::SolverUtils::RiemannSolver::RiemannSolver ( )
protected

Definition at line 80 of file RiemannSolver.cpp.

80  : m_requiresRotation(false), m_rotStorage(3)
81 {
82 }
Array< OneD, Array< OneD, Array< OneD, NekDouble > > > m_rotStorage
Rotation storage.
bool m_requiresRotation
Indicates whether the Riemann solver requires a rotation to be applied to the velocity fields.

◆ RiemannSolver() [2/2]

Nektar::SolverUtils::RiemannSolver::RiemannSolver ( const LibUtilities::SessionReaderSharedPtr pSession)
protected

Definition at line 84 of file RiemannSolver.cpp.

86  : m_requiresRotation(false), m_rotStorage(3)
87 {
88  boost::ignore_unused(pSession);
89 }

◆ ~RiemannSolver()

virtual SOLVER_UTILS_EXPORT Nektar::SolverUtils::RiemannSolver::~RiemannSolver ( )
inlineprotectedvirtual

Definition at line 160 of file RiemannSolver.h.

160 {};

Member Function Documentation

◆ CalcFluxJacobian()

void Nektar::SolverUtils::RiemannSolver::CalcFluxJacobian ( const int  nDim,
const Array< OneD, const Array< OneD, NekDouble >> &  Fwd,
const Array< OneD, const Array< OneD, NekDouble >> &  Bwd,
DNekBlkMatSharedPtr FJac,
DNekBlkMatSharedPtr BJac 
)

Calculate the flux jacobian of Fwd and Bwd.

Parameters
FwdForwards trace space.
BwdBackwards trace space.
fluxResultant flux along trace space.

Definition at line 515 of file RiemannSolver.cpp.

519 {
520  int nPts = Fwd[0].size();
521 
522  if (m_requiresRotation)
523  {
524  ASSERTL1(CheckVectors("N"), "N not defined.");
525  ASSERTL1(CheckAuxVec("vecLocs"), "vecLocs not defined.");
526  const Array<OneD, const Array<OneD, NekDouble>> normals =
527  m_vectors["N"]();
528  const Array<OneD, const Array<OneD, NekDouble>> vecLocs =
529  m_auxVec["vecLocs"]();
530 
531  v_CalcFluxJacobian(nDim, Fwd, Bwd, normals, FJac, BJac);
532  }
533  else
534  {
535  Array<OneD, Array<OneD, NekDouble>> normals(nDim);
536  for (int i = 0; i < nDim; i++)
537  {
538  normals[i] = Array<OneD, NekDouble>(nPts, 0.0);
539  }
540  Vmath::Fill(nPts, 1.0, normals[0], 1);
541 
542  v_CalcFluxJacobian(nDim, Fwd, Bwd, normals, FJac, BJac);
543  }
544 }
#define ASSERTL1(condition, msg)
Assert Level 1 – Debugging which is used whether in FULLDEBUG or DEBUG compilation mode....
Definition: ErrorUtil.hpp:249
SOLVER_UTILS_EXPORT bool CheckAuxVec(std::string name)
Determine whether a vector has been defined in m_auxVec.
virtual SOLVER_UTILS_EXPORT void v_CalcFluxJacobian(const int nDim, const Array< OneD, const Array< OneD, NekDouble >> &Fwd, const Array< OneD, const Array< OneD, NekDouble >> &Bwd, const Array< OneD, const Array< OneD, NekDouble >> &normals, DNekBlkMatSharedPtr &FJac, DNekBlkMatSharedPtr &BJac)
std::map< std::string, RSVecFuncType > m_vectors
Map of vector function types.
SOLVER_UTILS_EXPORT bool CheckVectors(std::string name)
Determine whether a vector has been defined in m_vectors.
std::map< std::string, RSVecFuncType > m_auxVec
Map of auxiliary vector function types.
void Fill(int n, const T alpha, T *x, const int incx)
Fill a vector with a constant value.
Definition: Vmath.cpp:45

References ASSERTL1, CheckAuxVec(), CheckVectors(), Vmath::Fill(), m_auxVec, m_requiresRotation, m_vectors, and v_CalcFluxJacobian().

◆ CheckAuxScal()

bool Nektar::SolverUtils::RiemannSolver::CheckAuxScal ( std::string  name)
protected

Determine whether a scalar has been defined in m_auxScal.

Parameters
nameScalar name.

Definition at line 355 of file RiemannSolver.cpp.

356 {
357  return m_auxScal.find(name) != m_auxScal.end();
358 }
std::map< std::string, RSScalarFuncType > m_auxScal
Map of auxiliary scalar function types.

References m_auxScal, and CellMLToNektar.pycml::name.

◆ CheckAuxVec()

bool Nektar::SolverUtils::RiemannSolver::CheckAuxVec ( std::string  name)
protected

Determine whether a vector has been defined in m_auxVec.

Parameters
nameVector name.

Definition at line 365 of file RiemannSolver.cpp.

366 {
367  return m_auxVec.find(name) != m_auxVec.end();
368 }

References m_auxVec, and CellMLToNektar.pycml::name.

Referenced by CalcFluxJacobian(), and Solve().

◆ CheckParams()

bool Nektar::SolverUtils::RiemannSolver::CheckParams ( std::string  name)
protected

Determine whether a parameter has been defined in m_params.

Parameters
nameParameter name.

Definition at line 345 of file RiemannSolver.cpp.

346 {
347  return m_params.find(name) != m_params.end();
348 }
std::map< std::string, RSParamFuncType > m_params
Map of parameter function types.

References m_params, and CellMLToNektar.pycml::name.

Referenced by Nektar::UpwindPulseSolver::RiemannSolverUpwind().

◆ CheckScalars()

bool Nektar::SolverUtils::RiemannSolver::CheckScalars ( std::string  name)
protected

Determine whether a scalar has been defined in m_scalars.

Parameters
nameScalar name.

Definition at line 325 of file RiemannSolver.cpp.

326 {
327  return m_scalars.find(name) != m_scalars.end();
328 }
std::map< std::string, RSScalarFuncType > m_scalars
Map of scalar function types.

References m_scalars, and CellMLToNektar.pycml::name.

Referenced by Nektar::UpwindPulseSolver::v_Solve(), Nektar::SolverUtils::UpwindLDGSolver::v_Solve(), and Nektar::SolverUtils::UpwindSolver::v_Solve().

◆ CheckVectors()

bool Nektar::SolverUtils::RiemannSolver::CheckVectors ( std::string  name)
protected

Determine whether a vector has been defined in m_vectors.

Parameters
nameVector name.

Definition at line 335 of file RiemannSolver.cpp.

336 {
337  return m_vectors.find(name) != m_vectors.end();
338 }

References m_vectors, and CellMLToNektar.pycml::name.

Referenced by CalcFluxJacobian(), Nektar::AcousticSolver::GetRotBasefield(), Solve(), and Nektar::RoeSolverSIMD::v_Solve().

◆ FromToRotation()

void Nektar::SolverUtils::RiemannSolver::FromToRotation ( Array< OneD, const NekDouble > &  from,
Array< OneD, const NekDouble > &  to,
NekDouble mat 
)
protected

A function for creating a rotation matrix that rotates a vector from into another vector to.

Authors: Tomas Möller, John Hughes "Efficiently Building a Matrix to Rotate One Vector to Another" Journal of Graphics Tools, 4(4):1-4, 1999

Parameters
fromNormalised 3-vector to rotate from.
toNormalised 3-vector to rotate to.
outResulting 3x3 rotation matrix (row-major order).

Definition at line 418 of file RiemannSolver.cpp.

421 {
422  NekDouble v[3];
423  NekDouble e, h, f;
424 
425  CROSS(v, from, to);
426  e = DOT(from, to);
427  f = (e < 0) ? -e : e;
428  if (f > 1.0 - EPSILON)
429  {
430  NekDouble u[3], v[3];
431  NekDouble x[3];
432  NekDouble c1, c2, c3;
433  int i, j;
434 
435  x[0] = (from[0] > 0.0) ? from[0] : -from[0];
436  x[1] = (from[1] > 0.0) ? from[1] : -from[1];
437  x[2] = (from[2] > 0.0) ? from[2] : -from[2];
438 
439  if (x[0] < x[1])
440  {
441  if (x[0] < x[2])
442  {
443  x[0] = 1.0;
444  x[1] = x[2] = 0.0;
445  }
446  else
447  {
448  x[2] = 1.0;
449  x[0] = x[1] = 0.0;
450  }
451  }
452  else
453  {
454  if (x[1] < x[2])
455  {
456  x[1] = 1.0;
457  x[0] = x[2] = 0.0;
458  }
459  else
460  {
461  x[2] = 1.0;
462  x[0] = x[1] = 0.0;
463  }
464  }
465 
466  u[0] = x[0] - from[0];
467  u[1] = x[1] - from[1];
468  u[2] = x[2] - from[2];
469  v[0] = x[0] - to[0];
470  v[1] = x[1] - to[1];
471  v[2] = x[2] - to[2];
472 
473  c1 = 2.0 / DOT(u, u);
474  c2 = 2.0 / DOT(v, v);
475  c3 = c1 * c2 * DOT(u, v);
476 
477  for (i = 0; i < 3; i++)
478  {
479  for (j = 0; j < 3; j++)
480  {
481  mat[3 * i + j] =
482  -c1 * u[i] * u[j] - c2 * v[i] * v[j] + c3 * v[i] * u[j];
483  }
484  mat[i + 3 * i] += 1.0;
485  }
486  }
487  else
488  {
489  NekDouble hvx, hvz, hvxy, hvxz, hvyz;
490  h = 1.0 / (1.0 + e);
491  hvx = h * v[0];
492  hvz = h * v[2];
493  hvxy = hvx * v[1];
494  hvxz = hvx * v[2];
495  hvyz = hvz * v[1];
496  mat[0] = e + hvx * v[0];
497  mat[1] = hvxy - v[2];
498  mat[2] = hvxz + v[1];
499  mat[3] = hvxy + v[2];
500  mat[4] = e + h * v[1] * v[1];
501  mat[5] = hvyz - v[0];
502  mat[6] = hvxz - v[1];
503  mat[7] = hvyz + v[0];
504  mat[8] = e + hvz * v[2];
505  }
506 }
#define EPSILON
#define CROSS(dest, v1, v2)
#define DOT(v1, v2)
double NekDouble

References CROSS, DOT, and EPSILON.

Referenced by GenerateRotationMatrices().

◆ GenerateRotationMatrices()

void Nektar::SolverUtils::RiemannSolver::GenerateRotationMatrices ( const Array< OneD, const Array< OneD, NekDouble >> &  normals)
protected

Generate rotation matrices for 3D expansions.

Definition at line 373 of file RiemannSolver.cpp.

375 {
376  Array<OneD, NekDouble> xdir(3, 0.0);
377  Array<OneD, NekDouble> tn(3);
378  NekDouble tmp[9];
379  const int nq = normals[0].size();
380  int i, j;
381  xdir[0] = 1.0;
382 
383  // Allocate storage for rotation matrices.
384  m_rotMat = Array<OneD, Array<OneD, NekDouble>>(9);
385 
386  for (i = 0; i < 9; ++i)
387  {
388  m_rotMat[i] = Array<OneD, NekDouble>(nq);
389  }
390  for (i = 0; i < normals[0].size(); ++i)
391  {
392  // Generate matrix which takes us from (1,0,0) vector to trace
393  // normal.
394  tn[0] = normals[0][i];
395  tn[1] = normals[1][i];
396  tn[2] = normals[2][i];
397  FromToRotation(tn, xdir, tmp);
398 
399  for (j = 0; j < 9; ++j)
400  {
401  m_rotMat[j][i] = tmp[j];
402  }
403  }
404 }
Array< OneD, Array< OneD, NekDouble > > m_rotMat
Rotation matrices for each trace quadrature point.
void FromToRotation(Array< OneD, const NekDouble > &from, Array< OneD, const NekDouble > &to, NekDouble *mat)
A function for creating a rotation matrix that rotates a vector from into another vector to.

References FromToRotation(), and m_rotMat.

Referenced by rotateToNormal(), and Nektar::RoeSolverSIMD::v_Solve().

◆ GetParams()

std::map<std::string, RSParamFuncType>& Nektar::SolverUtils::RiemannSolver::GetParams ( )
inline

Definition at line 125 of file RiemannSolver.h.

126  {
127  return m_params;
128  }

References m_params.

◆ GetScalars()

std::map<std::string, RSScalarFuncType>& Nektar::SolverUtils::RiemannSolver::GetScalars ( )
inline

Definition at line 115 of file RiemannSolver.h.

116  {
117  return m_scalars;
118  }

References m_scalars.

◆ GetVectors()

std::map<std::string, RSVecFuncType>& Nektar::SolverUtils::RiemannSolver::GetVectors ( )
inline

Definition at line 120 of file RiemannSolver.h.

121  {
122  return m_vectors;
123  }

References m_vectors.

◆ rotateFromNormal()

void Nektar::SolverUtils::RiemannSolver::rotateFromNormal ( const Array< OneD, const Array< OneD, NekDouble >> &  inarray,
const Array< OneD, const Array< OneD, NekDouble >> &  normals,
const Array< OneD, const Array< OneD, NekDouble >> &  vecLocs,
Array< OneD, Array< OneD, NekDouble >> &  outarray 
)
protected

Rotate a vector field from trace normal.

This function performs a rotation of the triad of vector components provided in inarray so that the first component aligns with the Cartesian components; it performs the inverse operation of RiemannSolver::rotateToNormal.

Definition at line 251 of file RiemannSolver.cpp.

256 {
257  for (int i = 0; i < inarray.size(); ++i)
258  {
259  Vmath::Vcopy(inarray[i].size(), inarray[i], 1, outarray[i], 1);
260  }
261 
262  for (int i = 0; i < vecLocs.size(); i++)
263  {
264  ASSERTL1(vecLocs[i].size() == normals.size(),
265  "vecLocs[i] element count mismatch");
266 
267  switch (normals.size())
268  {
269  case 1:
270  { // do nothing
271  const int nq = normals[0].size();
272  const int vx = (int)vecLocs[i][0];
273  Vmath::Vmul(nq, inarray[vx], 1, normals[0], 1, outarray[vx], 1);
274  break;
275  }
276  case 2:
277  {
278  const int nq = normals[0].size();
279  const int vx = (int)vecLocs[i][0];
280  const int vy = (int)vecLocs[i][1];
281 
282  Vmath::Vmul(nq, inarray[vy], 1, normals[1], 1, outarray[vx], 1);
283  Vmath::Vvtvm(nq, inarray[vx], 1, normals[0], 1, outarray[vx], 1,
284  outarray[vx], 1);
285  Vmath::Vmul(nq, inarray[vx], 1, normals[1], 1, outarray[vy], 1);
286  Vmath::Vvtvp(nq, inarray[vy], 1, normals[0], 1, outarray[vy], 1,
287  outarray[vy], 1);
288  break;
289  }
290 
291  case 3:
292  {
293  const int nq = normals[0].size();
294  const int vx = (int)vecLocs[i][0];
295  const int vy = (int)vecLocs[i][1];
296  const int vz = (int)vecLocs[i][2];
297 
298  Vmath::Vvtvvtp(nq, inarray[vx], 1, m_rotMat[0], 1, inarray[vy],
299  1, m_rotMat[3], 1, outarray[vx], 1);
300  Vmath::Vvtvp(nq, inarray[vz], 1, m_rotMat[6], 1, outarray[vx],
301  1, outarray[vx], 1);
302  Vmath::Vvtvvtp(nq, inarray[vx], 1, m_rotMat[1], 1, inarray[vy],
303  1, m_rotMat[4], 1, outarray[vy], 1);
304  Vmath::Vvtvp(nq, inarray[vz], 1, m_rotMat[7], 1, outarray[vy],
305  1, outarray[vy], 1);
306  Vmath::Vvtvvtp(nq, inarray[vx], 1, m_rotMat[2], 1, inarray[vy],
307  1, m_rotMat[5], 1, outarray[vz], 1);
308  Vmath::Vvtvp(nq, inarray[vz], 1, m_rotMat[8], 1, outarray[vz],
309  1, outarray[vz], 1);
310  break;
311  }
312 
313  default:
314  ASSERTL1(false, "Invalid space dimension.");
315  break;
316  }
317  }
318 }
void Vmul(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Multiply vector z = x*y.
Definition: Vmath.cpp:209
void Vvtvp(int n, const T *w, const int incw, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
vvtvp (vector times vector plus vector): z = w*x + y
Definition: Vmath.cpp:574
void Vvtvm(int n, const T *w, const int incw, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
vvtvm (vector times vector minus vector): z = w*x - y
Definition: Vmath.cpp:598
void Vvtvvtp(int n, const T *v, int incv, const T *w, int incw, const T *x, int incx, const T *y, int incy, T *z, int incz)
vvtvvtp (vector times vector plus vector times vector):
Definition: Vmath.cpp:692
void Vcopy(int n, const T *x, const int incx, T *y, const int incy)
Definition: Vmath.cpp:1255

References ASSERTL1, m_rotMat, Vmath::Vcopy(), Vmath::Vmul(), Vmath::Vvtvm(), Vmath::Vvtvp(), and Vmath::Vvtvvtp().

Referenced by Solve().

◆ rotateToNormal()

void Nektar::SolverUtils::RiemannSolver::rotateToNormal ( const Array< OneD, const Array< OneD, NekDouble >> &  inarray,
const Array< OneD, const Array< OneD, NekDouble >> &  normals,
const Array< OneD, const Array< OneD, NekDouble >> &  vecLocs,
Array< OneD, Array< OneD, NekDouble >> &  outarray 
)
protected

Rotate a vector field to trace normal.

This function performs a rotation of a vector so that the first component aligns with the trace normal direction.

The vectors components are stored in inarray. Their locations must be specified in the "vecLocs" array. vecLocs[0] contains the locations of the first vectors components, vecLocs[1] those of the second and so on.

In 2D, this is accomplished through the transform:

\[ (u_x, u_y) = (n_x u_x + n_y u_y, -n_x v_x + n_y v_y) \]

In 3D, we generate a (non-unique) transformation using RiemannSolver::fromToRotation.

Definition at line 167 of file RiemannSolver.cpp.

172 {
173  for (int i = 0; i < inarray.size(); ++i)
174  {
175  Vmath::Vcopy(inarray[i].size(), inarray[i], 1, outarray[i], 1);
176  }
177 
178  for (int i = 0; i < vecLocs.size(); i++)
179  {
180  ASSERTL1(vecLocs[i].size() == normals.size(),
181  "vecLocs[i] element count mismatch");
182 
183  switch (normals.size())
184  {
185  case 1:
186  { // do nothing
187  const int nq = inarray[0].size();
188  const int vx = (int)vecLocs[i][0];
189  Vmath::Vmul(nq, inarray[vx], 1, normals[0], 1, outarray[vx], 1);
190  break;
191  }
192  case 2:
193  {
194  const int nq = inarray[0].size();
195  const int vx = (int)vecLocs[i][0];
196  const int vy = (int)vecLocs[i][1];
197 
198  Vmath::Vmul(nq, inarray[vx], 1, normals[0], 1, outarray[vx], 1);
199  Vmath::Vvtvp(nq, inarray[vy], 1, normals[1], 1, outarray[vx], 1,
200  outarray[vx], 1);
201  Vmath::Vmul(nq, inarray[vx], 1, normals[1], 1, outarray[vy], 1);
202  Vmath::Vvtvm(nq, inarray[vy], 1, normals[0], 1, outarray[vy], 1,
203  outarray[vy], 1);
204  break;
205  }
206 
207  case 3:
208  {
209  const int nq = inarray[0].size();
210  const int vx = (int)vecLocs[i][0];
211  const int vy = (int)vecLocs[i][1];
212  const int vz = (int)vecLocs[i][2];
213 
214  // Generate matrices if they don't already exist.
215  if (m_rotMat.size() == 0)
216  {
217  GenerateRotationMatrices(normals);
218  }
219 
220  // Apply rotation matrices.
221  Vmath::Vvtvvtp(nq, inarray[vx], 1, m_rotMat[0], 1, inarray[vy],
222  1, m_rotMat[1], 1, outarray[vx], 1);
223  Vmath::Vvtvp(nq, inarray[vz], 1, m_rotMat[2], 1, outarray[vx],
224  1, outarray[vx], 1);
225  Vmath::Vvtvvtp(nq, inarray[vx], 1, m_rotMat[3], 1, inarray[vy],
226  1, m_rotMat[4], 1, outarray[vy], 1);
227  Vmath::Vvtvp(nq, inarray[vz], 1, m_rotMat[5], 1, outarray[vy],
228  1, outarray[vy], 1);
229  Vmath::Vvtvvtp(nq, inarray[vx], 1, m_rotMat[6], 1, inarray[vy],
230  1, m_rotMat[7], 1, outarray[vz], 1);
231  Vmath::Vvtvp(nq, inarray[vz], 1, m_rotMat[8], 1, outarray[vz],
232  1, outarray[vz], 1);
233  break;
234  }
235 
236  default:
237  ASSERTL1(false, "Invalid space dimension.");
238  break;
239  }
240  }
241 }
SOLVER_UTILS_EXPORT void GenerateRotationMatrices(const Array< OneD, const Array< OneD, NekDouble >> &normals)
Generate rotation matrices for 3D expansions.

References ASSERTL1, GenerateRotationMatrices(), m_rotMat, Vmath::Vcopy(), Vmath::Vmul(), Vmath::Vvtvm(), Vmath::Vvtvp(), and Vmath::Vvtvvtp().

Referenced by Nektar::AcousticSolver::GetRotBasefield(), and Solve().

◆ SetAuxScal()

template<typename FuncPointerT , typename ObjectPointerT >
void Nektar::SolverUtils::RiemannSolver::SetAuxScal ( std::string  name,
FuncPointerT  func,
ObjectPointerT  obj 
)
inline

Definition at line 99 of file RiemannSolver.h.

100  {
101  m_auxScal[name] = std::bind(func, obj);
102  }

References m_auxScal, and CellMLToNektar.pycml::name.

◆ SetAuxVec() [1/2]

template<typename FuncPointerT , typename ObjectPointerT >
void Nektar::SolverUtils::RiemannSolver::SetAuxVec ( std::string  name,
FuncPointerT  func,
ObjectPointerT  obj 
)
inline

Definition at line 105 of file RiemannSolver.h.

106  {
107  m_auxVec[name] = std::bind(func, obj);
108  }

References m_auxVec, and CellMLToNektar.pycml::name.

◆ SetAuxVec() [2/2]

void Nektar::SolverUtils::RiemannSolver::SetAuxVec ( std::string  name,
RSVecFuncType  fp 
)
inline

Definition at line 110 of file RiemannSolver.h.

111  {
112  m_auxVec[name] = fp;
113  }

References m_auxVec, and CellMLToNektar.pycml::name.

◆ SetParam() [1/2]

template<typename FuncPointerT , typename ObjectPointerT >
void Nektar::SolverUtils::RiemannSolver::SetParam ( std::string  name,
FuncPointerT  func,
ObjectPointerT  obj 
)
inline

Definition at line 88 of file RiemannSolver.h.

89  {
90  m_params[name] = std::bind(func, obj);
91  }

References m_params, and CellMLToNektar.pycml::name.

◆ SetParam() [2/2]

void Nektar::SolverUtils::RiemannSolver::SetParam ( std::string  name,
RSParamFuncType  fp 
)
inline

Definition at line 93 of file RiemannSolver.h.

94  {
95  m_params[name] = fp;
96  }

References m_params, and CellMLToNektar.pycml::name.

◆ SetScalar() [1/2]

template<typename FuncPointerT , typename ObjectPointerT >
void Nektar::SolverUtils::RiemannSolver::SetScalar ( std::string  name,
FuncPointerT  func,
ObjectPointerT  obj 
)
inline

Definition at line 66 of file RiemannSolver.h.

67  {
68  m_scalars[name] = std::bind(func, obj);
69  }

References m_scalars, and CellMLToNektar.pycml::name.

◆ SetScalar() [2/2]

void Nektar::SolverUtils::RiemannSolver::SetScalar ( std::string  name,
RSScalarFuncType  fp 
)
inline

Definition at line 71 of file RiemannSolver.h.

72  {
73  m_scalars[name] = fp;
74  }

References m_scalars, and CellMLToNektar.pycml::name.

◆ SetVector() [1/2]

template<typename FuncPointerT , typename ObjectPointerT >
void Nektar::SolverUtils::RiemannSolver::SetVector ( std::string  name,
FuncPointerT  func,
ObjectPointerT  obj 
)
inline

Definition at line 77 of file RiemannSolver.h.

78  {
79  m_vectors[name] = std::bind(func, obj);
80  }

References m_vectors, and CellMLToNektar.pycml::name.

◆ SetVector() [2/2]

void Nektar::SolverUtils::RiemannSolver::SetVector ( std::string  name,
RSVecFuncType  fp 
)
inline

Definition at line 82 of file RiemannSolver.h.

83  {
84  m_vectors[name] = fp;
85  }

References m_vectors, and CellMLToNektar.pycml::name.

◆ Solve()

void Nektar::SolverUtils::RiemannSolver::Solve ( const int  nDim,
const Array< OneD, const Array< OneD, NekDouble >> &  Fwd,
const Array< OneD, const Array< OneD, NekDouble >> &  Bwd,
Array< OneD, Array< OneD, NekDouble >> &  flux 
)

Perform the Riemann solve given the forwards and backwards spaces.

This routine calls the virtual function v_Solve to perform the Riemann solve. If the flag m_requiresRotation is set, then the velocity field is rotated to the normal direction to perform dimensional splitting, and the resulting fluxes are rotated back to the Cartesian directions before being returned. For the Rotation to work, the normal vectors "N" and the location of the vector components in Fwd "vecLocs"must be set via the SetAuxVec() method.

Parameters
FwdForwards trace space.
BwdBackwards trace space.
fluxResultant flux along trace space.

Definition at line 107 of file RiemannSolver.cpp.

111 {
112  if (m_requiresRotation)
113  {
114  ASSERTL1(CheckVectors("N"), "N not defined.");
115  ASSERTL1(CheckAuxVec("vecLocs"), "vecLocs not defined.");
116  const Array<OneD, const Array<OneD, NekDouble>> normals =
117  m_vectors["N"]();
118  const Array<OneD, const Array<OneD, NekDouble>> vecLocs =
119  m_auxVec["vecLocs"]();
120 
121  int nFields = Fwd.size();
122  int nPts = Fwd[0].size();
123 
124  if (m_rotStorage[0].size() != nFields ||
125  m_rotStorage[0][0].size() != nPts)
126  {
127  for (int i = 0; i < 3; ++i)
128  {
129  m_rotStorage[i] = Array<OneD, Array<OneD, NekDouble>>(nFields);
130  for (int j = 0; j < nFields; ++j)
131  {
132  m_rotStorage[i][j] = Array<OneD, NekDouble>(nPts);
133  }
134  }
135  }
136 
137  rotateToNormal(Fwd, normals, vecLocs, m_rotStorage[0]);
138  rotateToNormal(Bwd, normals, vecLocs, m_rotStorage[1]);
139  v_Solve(nDim, m_rotStorage[0], m_rotStorage[1], m_rotStorage[2]);
140  rotateFromNormal(m_rotStorage[2], normals, vecLocs, flux);
141  }
142  else
143  {
144  v_Solve(nDim, Fwd, Bwd, flux);
145  }
146 }
SOLVER_UTILS_EXPORT void rotateToNormal(const Array< OneD, const Array< OneD, NekDouble >> &inarray, const Array< OneD, const Array< OneD, NekDouble >> &normals, const Array< OneD, const Array< OneD, NekDouble >> &vecLocs, Array< OneD, Array< OneD, NekDouble >> &outarray)
Rotate a vector field to trace normal.
SOLVER_UTILS_EXPORT void rotateFromNormal(const Array< OneD, const Array< OneD, NekDouble >> &inarray, const Array< OneD, const Array< OneD, NekDouble >> &normals, const Array< OneD, const Array< OneD, NekDouble >> &vecLocs, Array< OneD, Array< OneD, NekDouble >> &outarray)
Rotate a vector field from trace normal.
virtual void v_Solve(const int nDim, const Array< OneD, const Array< OneD, NekDouble >> &Fwd, const Array< OneD, const Array< OneD, NekDouble >> &Bwd, Array< OneD, Array< OneD, NekDouble >> &flux)=0

References ASSERTL1, CheckAuxVec(), CheckVectors(), m_auxVec, m_requiresRotation, m_rotStorage, m_vectors, rotateFromNormal(), rotateToNormal(), and v_Solve().

◆ v_CalcFluxJacobian()

void Nektar::SolverUtils::RiemannSolver::v_CalcFluxJacobian ( const int  nDim,
const Array< OneD, const Array< OneD, NekDouble >> &  Fwd,
const Array< OneD, const Array< OneD, NekDouble >> &  Bwd,
const Array< OneD, const Array< OneD, NekDouble >> &  normals,
DNekBlkMatSharedPtr FJac,
DNekBlkMatSharedPtr BJac 
)
protectedvirtual

Definition at line 546 of file RiemannSolver.cpp.

551 {
552  boost::ignore_unused(nDim, Fwd, Bwd, normals, FJac, BJac);
553  NEKERROR(ErrorUtil::efatal, "v_CalcFluxJacobian not specified.");
554 }
#define NEKERROR(type, msg)
Assert Level 0 – Fundamental assert which is used whether in FULLDEBUG, DEBUG or OPT compilation mode...
Definition: ErrorUtil.hpp:209

References Nektar::ErrorUtil::efatal, and NEKERROR.

Referenced by CalcFluxJacobian().

◆ v_Solve()

virtual void Nektar::SolverUtils::RiemannSolver::v_Solve ( const int  nDim,
const Array< OneD, const Array< OneD, NekDouble >> &  Fwd,
const Array< OneD, const Array< OneD, NekDouble >> &  Bwd,
Array< OneD, Array< OneD, NekDouble >> &  flux 
)
protectedpure virtual

Member Data Documentation

◆ m_auxScal

std::map<std::string, RSScalarFuncType> Nektar::SolverUtils::RiemannSolver::m_auxScal
protected

Map of auxiliary scalar function types.

Definition at line 148 of file RiemannSolver.h.

Referenced by CheckAuxScal(), and SetAuxScal().

◆ m_auxVec

std::map<std::string, RSVecFuncType> Nektar::SolverUtils::RiemannSolver::m_auxVec
protected

Map of auxiliary vector function types.

Definition at line 150 of file RiemannSolver.h.

Referenced by CalcFluxJacobian(), CheckAuxVec(), SetAuxVec(), and Solve().

◆ m_params

std::map<std::string, RSParamFuncType> Nektar::SolverUtils::RiemannSolver::m_params
protected

◆ m_requiresRotation

bool Nektar::SolverUtils::RiemannSolver::m_requiresRotation
protected

◆ m_rotMat

Array<OneD, Array<OneD, NekDouble> > Nektar::SolverUtils::RiemannSolver::m_rotMat
protected

Rotation matrices for each trace quadrature point.

Definition at line 152 of file RiemannSolver.h.

Referenced by GenerateRotationMatrices(), rotateFromNormal(), rotateToNormal(), and Nektar::RoeSolverSIMD::v_Solve().

◆ m_rotStorage

Array<OneD, Array<OneD, Array<OneD, NekDouble> > > Nektar::SolverUtils::RiemannSolver::m_rotStorage
protected

Rotation storage.

Definition at line 154 of file RiemannSolver.h.

Referenced by Solve().

◆ m_scalars

std::map<std::string, RSScalarFuncType> Nektar::SolverUtils::RiemannSolver::m_scalars
protected

◆ m_spacedim

int Nektar::SolverUtils::RiemannSolver::m_spacedim

Definition at line 130 of file RiemannSolver.h.

◆ m_vectors

std::map<std::string, RSVecFuncType> Nektar::SolverUtils::RiemannSolver::m_vectors
protected