Nektar++
NodalTriSPIData.h
Go to the documentation of this file.
1///////////////////////////////////////////////////////////////////////////////
2//
3// File: NodalTriSPIData.h
4//
5// For more information, please see: http://www.nektar.info
6//
7// The MIT License
8//
9// Copyright (c) 2006 Division of Applied Mathematics, Brown University (USA),
10// Department of Aeronautics, Imperial College London (UK), and Scientific
11// Computing and Imaging Institute, University of Utah (USA).
12//
13// Permission is hereby granted, free of charge, to any person obtaining a
14// copy of this software and associated documentation files (the "Software"),
15// to deal in the Software without restriction, including without limitation
16// the rights to use, copy, modify, merge, publish, distribute, sublicense,
17// and/or sell copies of the Software, and to permit persons to whom the
18// Software is furnished to do so, subject to the following conditions:
19//
20// The above copyright notice and this permission notice shall be included
21// in all copies or substantial portions of the Software.
22//
23// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
24// OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
25// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
26// THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
27// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
28// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
29// DEALINGS IN THE SOFTWARE.
30//
31// Description: 2D Nodal Triangle SPI point data
32//
33///////////////////////////////////////////////////////////////////////////////
34
35#ifndef NODALTRISPIDATA_H
36#define NODALTRISPIDATA_H
37
38namespace Nektar
39{
40namespace LibUtilities
41{
42const size_t NodalTriSPIAvailable = 10;
43static const size_t NodalTriSPINPTS[NodalTriSPIAvailable] = {
44 1, 3, 6, 6, 7, 13, 16, 18, 22, 25};
45static const NekDouble NodalTriSPIData[][3] = {
46 // %%% x y w
47 // 1 1 %%% Order / Number of Points
48 {-0.33333333333333333333333333333333333333,
49 -0.33333333333333333333333333333333333333, 2},
50 // 2 3 %%% Order / Number of Points
51 {-0.66666666666666666666666666666666666667,
52 0.33333333333333333333333333333333333333,
53 0.66666666666666666666666666666666666667},
54 {0.33333333333333333333333333333333333333,
55 -0.66666666666666666666666666666666666667,
56 0.66666666666666666666666666666666666667},
57 {-0.66666666666666666666666666666666666667,
58 -0.66666666666666666666666666666666666667,
59 0.66666666666666666666666666666666666667},
60 // 3 6 %%% Order / Number of Points
61 {-0.1081030181680702273633414922338960232,
62 -0.7837939636638595452733170155322079536,
63 0.44676317935602293139001401686624560874},
64 {-0.7837939636638595452733170155322079536,
65 -0.1081030181680702273633414922338960232,
66 0.44676317935602293139001401686624560874},
67 {-0.1081030181680702273633414922338960232,
68 -0.1081030181680702273633414922338960232,
69 0.44676317935602293139001401686624560874},
70 {-0.81684757298045851308085707319559698429,
71 0.63369514596091702616171414639119396858,
72 0.21990348731064373527665264980042105793},
73 {0.63369514596091702616171414639119396858,
74 -0.81684757298045851308085707319559698429,
75 0.21990348731064373527665264980042105793},
76 {-0.81684757298045851308085707319559698429,
77 -0.81684757298045851308085707319559698429,
78 0.21990348731064373527665264980042105793},
79 // 4 6 %%% Order / Number of Points
80 {-0.1081030181680702273633414922338960232,
81 -0.7837939636638595452733170155322079536,
82 0.44676317935602293139001401686624560874},
83 {-0.7837939636638595452733170155322079536,
84 -0.1081030181680702273633414922338960232,
85 0.44676317935602293139001401686624560874},
86 {-0.1081030181680702273633414922338960232,
87 -0.1081030181680702273633414922338960232,
88 0.44676317935602293139001401686624560874},
89 {-0.81684757298045851308085707319559698429,
90 0.63369514596091702616171414639119396858,
91 0.21990348731064373527665264980042105793},
92 {0.63369514596091702616171414639119396858,
93 -0.81684757298045851308085707319559698429,
94 0.21990348731064373527665264980042105793},
95 {-0.81684757298045851308085707319559698429,
96 -0.81684757298045851308085707319559698429,
97 0.21990348731064373527665264980042105793},
98 // 5 7 %%% Order / Number of Points
99 {-0.33333333333333333333333333333333333333,
100 -0.33333333333333333333333333333333333333, 0.45},
101 {-0.79742698535308732239802527616975234389,
102 0.59485397070617464479605055233950468778,
103 0.25187836108965430519136789100036266732},
104 {0.59485397070617464479605055233950468778,
105 -0.79742698535308732239802527616975234389,
106 0.25187836108965430519136789100036266732},
107 {-0.79742698535308732239802527616975234389,
108 -0.79742698535308732239802527616975234389,
109 0.25187836108965430519136789100036266732},
110 {-0.059715871789769820459117580973104798968,
111 -0.88056825642046035908176483805379040206,
112 0.26478830557701236147529877566630399935},
113 {-0.88056825642046035908176483805379040206,
114 -0.059715871789769820459117580973104798968,
115 0.26478830557701236147529877566630399935},
116 {-0.059715871789769820459117580973104798968,
117 -0.059715871789769820459117580973104798968,
118 0.26478830557701236147529877566630399935},
119 // 6 13 %%% Order / Number of Points
120 {-0.3333333333333333, -0.3333333333333333, 0.4153725894804773},
121 {-1, 1, 0.01668544312227965},
122 {1, -1, 0.01668544312227965},
123 {-1, -1, 0.01668544312227965},
124 {-0.07249846092703716, -0.8550030781459257, 0.1914152449999351},
125 {-0.8550030781459257, -0.07249846092703716, 0.1914152449999351},
126 {-0.07249846092703716, -0.07249846092703716, 0.1914152449999351},
127 {0.4693907615361228, -0.8739333400138243, 0.1600542243588131},
128 {-0.8739333400138243, 0.4693907615361228, 0.1600542243588131},
129 {-0.5954574215222985, -0.8739333400138243, 0.1600542243588131},
130 {-0.8739333400138243, -0.5954574215222985, 0.1600542243588131},
131 {-0.5954574215222985, 0.4693907615361228, 0.1600542243588131},
132 {0.4693907615361228, -0.5954574215222985, 0.1600542243588131},
133 // 7 16 %%% Order / Number of Points
134 {-0.3333333333333333, -0.3333333333333333, 0.02890517766969565},
135 {-0.05159753420403723, -0.8968049315919255, 0.1692311578402325},
136 {-0.8968049315919255, -0.05159753420403723, 0.1692311578402325},
137 {-0.05159753420403723, -0.05159753420403723, 0.1692311578402325},
138 {-0.52840910025121, 0.05681820050242004, 0.2565587963589694},
139 {0.05681820050242004, -0.52840910025121, 0.2565587963589694},
140 {-0.52840910025121, -0.52840910025121, 0.2565587963589694},
141 {-1, 1, 0.01018650230579353},
142 {1, -1, 0.01018650230579353},
143 {-1, -1, 0.01018650230579353},
144 {-0.9167345590281095, 0.569735685302827, 0.1105275754692198},
145 {0.569735685302827, -0.9167345590281095, 0.1105275754692198},
146 {-0.6530011262747175, 0.569735685302827, 0.1105275754692198},
147 {0.569735685302827, -0.6530011262747175, 0.1105275754692198},
148 {-0.6530011262747175, -0.9167345590281096, 0.1105275754692198},
149 {-0.9167345590281096, -0.6530011262747175, 0.1105275754692198},
150 // 8 18 %%% Order / Number of Points
151 {-0.5228225045348536, 0.0456450090697072, 0.2646287570910316},
152 {0.0456450090697072, -0.5228225045348536, 0.2646287570910316},
153 {-0.5228225045348536, -0.5228225045348536, 0.2646287570910316},
154 {-0.865016154723089, 0.730032309446178, 0.05974557205954301},
155 {0.730032309446178, -0.865016154723089, 0.05974557205954301},
156 {-0.865016154723089, -0.865016154723089, 0.05974557205954301},
157 {-0.05332197913465642, -0.8933560417306872, 0.1492582098166287},
158 {-0.8933560417306872, -0.05332197913465642, 0.1492582098166287},
159 {-0.05332197913465642, -0.05332197913465642, 0.1492582098166287},
160 {-1, 1, 0.006236363791150692},
161 {1, -1, 0.006236363791150692},
162 {-1, -1, 0.006236363791150692},
163 {-0.5656703440391746, 0.4848664878635023, 0.09339888195415628},
164 {0.4848664878635023, -0.5656703440391746, 0.09339888195415628},
165 {-0.9191961438243277, 0.4848664878635023, 0.09339888195415628},
166 {0.4848664878635023, -0.9191961438243277, 0.09339888195415628},
167 {-0.9191961438243277, -0.5656703440391746, 0.09339888195415628},
168 {-0.5656703440391746, -0.9191961438243277, 0.09339888195415628},
169 // 9 22 %%% Order / Number of Points
170 {-0.3333333333333333, -0.3333333333333333, 0.2125563146250694},
171 {-0.1128567802029919, -0.7742864395940161, 0.1608078833870916},
172 {-0.7742864395940161, -0.1128567802029919, 0.1608078833870916},
173 {-0.1128567802029919, -0.1128567802029919, 0.1608078833870916},
174 {-0.6200530872876424, 0.2401061745752848, 0.1619222257331837},
175 {0.2401061745752848, -0.6200530872876424, 0.1619222257331837},
176 {-0.6200530872876424, -0.6200530872876424, 0.1619222257331837},
177 {-1, 1, 0.000350388943572419},
178 {1, -1, 0.000350388943572419},
179 {-1, -1, 0.000350388943572419},
180 {-0.01239829029425277, -0.9752034194114945, 0.04798535534603363},
181 {-0.9752034194114945, -0.01239829029425277, 0.04798535534603363},
182 {-0.01239829029425277, -0.01239829029425277, 0.04798535534603363},
183 {-0.9083876895065616, 0.8167753790131231, 0.05161455087260469},
184 {0.8167753790131231, -0.9083876895065616, 0.05161455087260469},
185 {-0.9083876895065616, -0.9083876895065616, 0.05161455087260469},
186 {-0.9263231758905274, 0.482397197568996, 0.08656707875457882},
187 {0.482397197568996, -0.9263231758905274, 0.08656707875457882},
188 {-0.5560740216784685, 0.4823971975689959, 0.08656707875457882},
189 {0.4823971975689959, -0.5560740216784685, 0.08656707875457882},
190 {-0.5560740216784685, -0.9263231758905274, 0.08656707875457882},
191 {-0.9263231758905274, -0.5560740216784685, 0.08656707875457882},
192 // 10 25 %%% Order / Number of Points
193 {-0.3333333333333333, -0.3333333333333333, 0.1463412629389919},
194 {-0.1517578857149908, -0.6964842285700183, 0.1596259407516009},
195 {-0.6964842285700183, -0.1517578857149908, 0.1596259407516009},
196 {-0.1517578857149908, -0.1517578857149908, 0.1596259407516009},
197 {-1, 1, 0.004142056403083998},
198 {1, -1, 0.004142056403083998},
199 {-1, -1, 0.004142056403083998},
200 {-0.6385578178947611, 0.2771156357895221, 0.1561253967816473},
201 {0.2771156357895221, -0.6385578178947611, 0.1561253967816473},
202 {-0.6385578178947611, -0.6385578178947611, 0.1561253967816473},
203 {-0.02473842217280176, -0.9505231556543965, 0.04820131094351466},
204 {-0.9505231556543965, -0.02473842217280176, 0.04820131094351466},
205 {-0.02473842217280176, -0.02473842217280176, 0.04820131094351466},
206 {-0.7790015033862367, 0.7167148116753153, 0.04960894888480484},
207 {0.7167148116753153, -0.7790015033862367, 0.04960894888480484},
208 {-0.9377133082890785, 0.7167148116753153, 0.04960894888480484},
209 {0.7167148116753153, -0.9377133082890785, 0.04960894888480484},
210 {-0.9377133082890785, -0.7790015033862367, 0.04960894888480484},
211 {-0.7790015033862367, -0.9377133082890785, 0.04960894888480484},
212 {-0.4144607978125549, 0.3389482548091939, 0.0752868215187729},
213 {0.3389482548091939, -0.4144607978125549, 0.0752868215187729},
214 {-0.924487456996639, 0.3389482548091939, 0.0752868215187729},
215 {0.3389482548091939, -0.924487456996639, 0.0752868215187729},
216 {-0.924487456996639, -0.4144607978125548, 0.0752868215187729},
217 {-0.4144607978125548, -0.924487456996639, 0.0752868215187729}};
218
219} // namespace LibUtilities
220} // namespace Nektar
221
222#endif
const size_t NodalTriSPIAvailable
static const size_t NodalTriSPINPTS[NodalTriSPIAvailable]
static const NekDouble NodalTriSPIData[][3]
The above copyright notice and this permission notice shall be included.
Definition: CoupledSolver.h:2
double NekDouble