Nektar++
StdExpansion2D.h
Go to the documentation of this file.
1///////////////////////////////////////////////////////////////////////////////
2//
3// File: StdExpansion2D.h
4//
5// For more information, please see: http://www.nektar.info
6//
7// The MIT License
8//
9// Copyright (c) 2006 Division of Applied Mathematics, Brown University (USA),
10// Department of Aeronautics, Imperial College London (UK), and Scientific
11// Computing and Imaging Institute, University of Utah (USA).
12//
13// Permission is hereby granted, free of charge, to any person obtaining a
14// copy of this software and associated documentation files (the "Software"),
15// to deal in the Software without restriction, including without limitation
16// the rights to use, copy, modify, merge, publish, distribute, sublicense,
17// and/or sell copies of the Software, and to permit persons to whom the
18// Software is furnished to do so, subject to the following conditions:
19//
20// The above copyright notice and this permission notice shall be included
21// in all copies or substantial portions of the Software.
22//
23// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
24// OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
25// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
26// THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
27// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
28// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
29// DEALINGS IN THE SOFTWARE.
30//
31// Description: Daughter of StdExpansion. This class contains routine
32// which are common to 2D expansion. Typically this inolves physiocal
33// space operations.
34//
35///////////////////////////////////////////////////////////////////////////////
36
37#ifndef STDEXP2D_H
38#define STDEXP2D_H
39
42
43namespace Nektar
44{
45namespace StdRegions
46{
47
48class StdExpansion2D : virtual public StdExpansion
49{
50public:
53 const LibUtilities::BasisKey &Ba,
54 const LibUtilities::BasisKey &Bb);
56 STD_REGIONS_EXPORT virtual ~StdExpansion2D() override;
57
58 // Generic operations in different element
59
60 /** \brief Calculate the 2D derivative in the local
61 * tensor/collapsed coordinate at the physical points
62 *
63 * This function is independent of the expansion basis and can
64 * therefore be defined for all tensor product distribution of
65 * quadrature points in a generic manner. The key operations are:
66 *
67 * - \f$ \frac{d}{d\eta_1} \rightarrow {\bf D^T_0 u } \f$ \n
68 * - \f$ \frac{d}{d\eta_2} \rightarrow {\bf D_1 u } \f$
69 *
70 * \param inarray array of physical points to be differentiated
71 * \param outarray_d0 the resulting array of derivative in the
72 * \f$\eta_1\f$ direction will be stored in outarray_d0 as output
73 * of the function
74 * \param outarray_d1 the resulting array of derivative in the
75 * \f$\eta_2\f$ direction will be stored in outarray_d1 as output
76 * of the function
77 *
78 * Recall that:
79 * \f$
80 * \hspace{1cm} \begin{array}{llll}
81 * \mbox{Shape} & \mbox{Cartesian coordinate range} &
82 * \mbox{Collapsed coord.} &
83 * \mbox{Collapsed coordinate definition}\\
84 * \mbox{Quadrilateral} & -1 \leq \xi_1,\xi_2 \leq 1
85 * & -1 \leq \eta_1,\eta_2 \leq 1
86 * & \eta_1 = \xi_1, \eta_2 = \xi_2\\
87 * \mbox{Triangle} & -1 \leq \xi_1,\xi_2; \xi_1+\xi_2 \leq 0
88 * & -1 \leq \eta_1,\eta_2 \leq 1
89 * & \eta_1 = \frac{2(1+\xi_1)}{(1-\xi_2)}-1, \eta_2 = \xi_2 \\
90 * \end{array} \f$
91 */
93 const Array<OneD, const NekDouble> &inarray,
94 Array<OneD, NekDouble> &outarray_d0,
95 Array<OneD, NekDouble> &outarray_d1);
96
101
102 // find derivative of u (inarray) at all coords points
104 const Array<OneD, NekDouble> &coord,
105 const Array<OneD, const NekDouble> &inarray,
106 std::array<NekDouble, 3> &firstOrderDerivs)
107 {
108 const int nq0 = m_base[0]->GetNumPoints();
109 const int nq1 = m_base[1]->GetNumPoints();
110
111 const NekDouble *ptr = &inarray[0];
112 Array<OneD, NekDouble> deriv0(nq1, 0.0);
113 Array<OneD, NekDouble> phys0(nq1, 0.0);
114
115 for (int j = 0; j < nq1; ++j, ptr += nq0)
116 {
117 phys0[j] =
118 StdExpansion::BaryEvaluate<0, true>(coord[0], ptr, deriv0[j]);
119 }
120 firstOrderDerivs[0] =
121 StdExpansion::BaryEvaluate<1, false>(coord[1], &deriv0[0]);
122
123 return StdExpansion::BaryEvaluate<1, true>(coord[1], &phys0[0],
124 firstOrderDerivs[1]);
125 }
126
128 const Array<OneD, const NekDouble> &base0,
129 const Array<OneD, const NekDouble> &base1,
130 const Array<OneD, const NekDouble> &inarray,
132 bool doCheckCollDir0 = true, bool doCheckCollDir1 = true);
133
135 const Array<OneD, const NekDouble> &base0,
136 const Array<OneD, const NekDouble> &base1,
137 const Array<OneD, const NekDouble> &inarray,
139 bool doCheckCollDir0 = true, bool doCheckCollDir1 = true);
140
141protected:
142 /** \brief This function evaluates the expansion at a single
143 * (arbitrary) point of the domain
144 *
145 * This function is a wrapper around the virtual function
146 * \a v_PhysEvaluate()
147 *
148 * Based on the value of the expansion at the quadrature points,
149 * this function calculates the value of the expansion at an
150 * arbitrary single points (with coordinates \f$ \mathbf{x_c}\f$
151 * given by the pointer \a coords). This operation, equivalent to
152 * \f[ u(\mathbf{x_c}) = \sum_p \phi_p(\mathbf{x_c}) \hat{u}_p \f]
153 * is evaluated using Lagrangian interpolants through the quadrature
154 * points:
155 * \f[ u(\mathbf{x_c}) = \sum_p h_p(\mathbf{x_c}) u_p\f]
156 *
157 * This function requires that the physical value array
158 * \f$\mathbf{u}\f$ (implemented as the attribute #m_phys)
159 * is set.
160 *
161 * \param coords the coordinates of the single point
162 * \return returns the value of the expansion at the single point
163 */
165 const Array<OneD, const NekDouble> &coords,
166 const Array<OneD, const NekDouble> &physvals) override;
167
170 const Array<OneD, const NekDouble> &physvals) override;
171
173 const Array<OneD, NekDouble> &coord,
174 const Array<OneD, const NekDouble> &inarray,
175 std::array<NekDouble, 3> &firstOrderDerivs) override;
176
178 const Array<OneD, const NekDouble> &base0,
179 const Array<OneD, const NekDouble> &base1,
180 const Array<OneD, const NekDouble> &inarray,
182 bool doCheckCollDir0, bool doCheckCollDir1) = 0;
183
185 const Array<OneD, const NekDouble> &base0,
186 const Array<OneD, const NekDouble> &base1,
187 const Array<OneD, const NekDouble> &inarray,
189 bool doCheckCollDir0, bool doCheckCollDir1) = 0;
190
192 const Array<OneD, const NekDouble> &inarray,
193 Array<OneD, NekDouble> &outarray,
194 const StdRegions::StdMatrixKey &mkey) override;
196 const Array<OneD, const NekDouble> &inarray,
197 Array<OneD, NekDouble> &outarray,
198 const StdRegions::StdMatrixKey &mkey) override;
199
201 const unsigned int traceid,
202 Array<OneD, unsigned int> &maparray) override;
203
205 const unsigned int eid, Array<OneD, unsigned int> &maparray,
206 Array<OneD, int> &signarray, Orientation edgeOrient, int P,
207 int Q) override;
208
210 const int eid, Array<OneD, unsigned int> &maparray,
211 Array<OneD, int> &signarray, Orientation edgeOrient = eForwards,
212 int P = -1, int Q = -1) override;
213
215 const int dir, DNekMatSharedPtr &mat) override;
216
217private:
218 virtual int v_GetShapeDimension() const override final
219 {
220 return 2;
221 }
222};
223
224typedef std::shared_ptr<StdExpansion2D> StdExpansion2DSharedPtr;
225
226} // namespace StdRegions
227} // namespace Nektar
228
229#endif // STDEXP2D_H
#define STD_REGIONS_EXPORT
Describes the specification for a Basis.
Definition: Basis.h:47
virtual void v_GenStdMatBwdDeriv(const int dir, DNekMatSharedPtr &mat) override
virtual void v_IProductWRTBase_SumFacKernel(const Array< OneD, const NekDouble > &base0, const Array< OneD, const NekDouble > &base1, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, Array< OneD, NekDouble > &wsp, bool doCheckCollDir0, bool doCheckCollDir1)=0
void PhysTensorDeriv(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray_d0, Array< OneD, NekDouble > &outarray_d1)
Calculate the 2D derivative in the local tensor/collapsed coordinate at the physical points.
virtual void v_HelmholtzMatrixOp_MatFree(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdRegions::StdMatrixKey &mkey) override
virtual void v_GetTraceToElementMap(const int eid, Array< OneD, unsigned int > &maparray, Array< OneD, int > &signarray, Orientation edgeOrient=eForwards, int P=-1, int Q=-1) override
virtual void v_BwdTrans_SumFacKernel(const Array< OneD, const NekDouble > &base0, const Array< OneD, const NekDouble > &base1, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, Array< OneD, NekDouble > &wsp, bool doCheckCollDir0, bool doCheckCollDir1)=0
NekDouble BaryTensorDeriv(const Array< OneD, NekDouble > &coord, const Array< OneD, const NekDouble > &inarray, std::array< NekDouble, 3 > &firstOrderDerivs)
NekDouble Integral(const Array< OneD, const NekDouble > &inarray, const Array< OneD, const NekDouble > &w0, const Array< OneD, const NekDouble > &w1)
void BwdTrans_SumFacKernel(const Array< OneD, const NekDouble > &base0, const Array< OneD, const NekDouble > &base1, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, Array< OneD, NekDouble > &wsp, bool doCheckCollDir0=true, bool doCheckCollDir1=true)
virtual void v_GetTraceCoeffMap(const unsigned int traceid, Array< OneD, unsigned int > &maparray) override
virtual void v_LaplacianMatrixOp_MatFree(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const StdRegions::StdMatrixKey &mkey) override
void IProductWRTBase_SumFacKernel(const Array< OneD, const NekDouble > &base0, const Array< OneD, const NekDouble > &base1, const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, Array< OneD, NekDouble > &wsp, bool doCheckCollDir0=true, bool doCheckCollDir1=true)
virtual NekDouble v_PhysEvaluate(const Array< OneD, const NekDouble > &coords, const Array< OneD, const NekDouble > &physvals) override
This function evaluates the expansion at a single (arbitrary) point of the domain.
virtual void v_GetElmtTraceToTraceMap(const unsigned int eid, Array< OneD, unsigned int > &maparray, Array< OneD, int > &signarray, Orientation edgeOrient, int P, int Q) override
Determine the mapping to re-orientate the coefficients along the element trace (assumed to align with...
virtual int v_GetShapeDimension() const override final
The base class for all shapes.
Definition: StdExpansion.h:71
Array< OneD, LibUtilities::BasisSharedPtr > m_base
@ P
Monomial polynomials .
Definition: BasisType.h:64
std::shared_ptr< StdExpansion2D > StdExpansion2DSharedPtr
The above copyright notice and this permission notice shall be included.
Definition: CoupledSolver.h:2
std::shared_ptr< DNekMat > DNekMatSharedPtr
Definition: NekTypeDefs.hpp:75
double NekDouble