Nektar++
Public Member Functions | Protected Member Functions | Protected Attributes | Private Types | List of all members
Nektar::LibUtilities::NodalUtilPrism Class Reference

Specialisation of the NodalUtil class to support nodal prismatic elements. More...

#include <NodalUtil.h>

Inheritance diagram for Nektar::LibUtilities::NodalUtilPrism:
[legend]

Public Member Functions

 NodalUtilPrism (size_t degree, Array< OneD, NekDouble > r, Array< OneD, NekDouble > s, Array< OneD, NekDouble > t)
 Construct the nodal utility class for a prism. More...
 
virtual ~NodalUtilPrism ()
 
- Public Member Functions inherited from Nektar::LibUtilities::NodalUtil
virtual ~NodalUtil ()=default
 
NekVector< NekDoubleGetWeights ()
 Obtain the integration weights for the given nodal distribution. More...
 
SharedMatrix GetVandermonde ()
 Return the Vandermonde matrix for the nodal distribution. More...
 
SharedMatrix GetVandermondeForDeriv (size_t dir)
 Return the Vandermonde matrix of the derivative of the basis functions for the nodal distribution. More...
 
SharedMatrix GetDerivMatrix (size_t dir)
 Return the derivative matrix for the nodal distribution. More...
 
SharedMatrix GetInterpolationMatrix (Array< OneD, Array< OneD, NekDouble > > &xi)
 Construct the interpolation matrix used to evaluate the basis at the points xi inside the element. More...
 

Protected Member Functions

virtual NekVector< NekDoublev_OrthoBasis (const size_t mode) override
 Return the value of the modal functions for the prismatic element at the nodal points m_xi for a given mode. More...
 
virtual NekVector< NekDoublev_OrthoBasisDeriv (const size_t dir, const size_t mode) override
 Return the value of the derivative of the modal functions for the prismatic element at the nodal points m_xi for a given mode. More...
 
virtual std::shared_ptr< NodalUtilv_CreateUtil (Array< OneD, Array< OneD, NekDouble > > &xi) override
 Construct a NodalUtil object of the appropriate element type for a given set of points. More...
 
virtual NekDouble v_ModeZeroIntegral () override
 Return the value of the integral of the zero-th mode for this element. More...
 
virtual size_t v_NumModes () override
 Calculate the number of degrees of freedom for this element. More...
 
- Protected Member Functions inherited from Nektar::LibUtilities::NodalUtil
 NodalUtil (size_t degree, size_t dim)
 Set up the NodalUtil object. More...
 
virtual NekVector< NekDoublev_OrthoBasis (const size_t mode)=0
 Return the values of the orthogonal basis at the nodal points for a given mode. More...
 
virtual NekVector< NekDoublev_OrthoBasisDeriv (const size_t dir, const size_t mode)=0
 Return the values of the derivative of the orthogonal basis at the nodal points for a given mode. More...
 
virtual std::shared_ptr< NodalUtilv_CreateUtil (Array< OneD, Array< OneD, NekDouble > > &xi)=0
 Construct a NodalUtil object of the appropriate element type for a given set of points. More...
 
virtual NekDouble v_ModeZeroIntegral ()=0
 Return the value of the integral of the zero-th mode for this element. More...
 
virtual size_t v_NumModes ()=0
 Calculate the number of degrees of freedom for this element. More...
 

Protected Attributes

std::vector< Modem_ordering
 Mapping from the \( (i,j) \) indexing of the basis to a continuous ordering. More...
 
Array< OneD, Array< OneD, NekDouble > > m_eta
 Collapsed coordinates \( (\eta_1, \eta_2, \eta_3) \) of the nodal points. More...
 
- Protected Attributes inherited from Nektar::LibUtilities::NodalUtil
size_t m_dim
 Dimension of the nodal element. More...
 
size_t m_degree
 Degree of the nodal element. More...
 
size_t m_numPoints
 Total number of nodal points. More...
 
Array< OneD, Array< OneD, NekDouble > > m_xi
 Coordinates of the nodal points defining the basis. More...
 

Private Types

typedef std::tuple< int, int, int > Mode
 

Detailed Description

Specialisation of the NodalUtil class to support nodal prismatic elements.

Definition at line 261 of file NodalUtil.h.

Member Typedef Documentation

◆ Mode

typedef std::tuple<int, int, int> Nektar::LibUtilities::NodalUtilPrism::Mode
private

Definition at line 263 of file NodalUtil.h.

Constructor & Destructor Documentation

◆ NodalUtilPrism()

Nektar::LibUtilities::NodalUtilPrism::NodalUtilPrism ( size_t  degree,
Array< OneD, NekDouble r,
Array< OneD, NekDouble s,
Array< OneD, NekDouble t 
)

Construct the nodal utility class for a prism.

The constructor of this class sets up two member variables used in the evaluation of the orthogonal basis:

  • NodalUtilPrism::m_eta is used to construct the collapsed coordinate locations of the nodal points \( (\eta_1, \eta_2, \eta_3) \) inside the cube \([-1,1]^3\) on which the orthogonal basis functions are defined.
  • NodalUtilPrism::m_ordering constructs a mapping from the index set \( I = \{ (i,j,k)\ |\ 0\leq i,j,k \leq P, i+k \leq P \}\) to an ordering \( 0 \leq m(ijk) \leq (P+1)(P+1)(P+2)/2 \) that defines the monomials \( \xi_1^i \xi_2^j \xi_3^k \) that span the prismatic space. This is then used to calculate which \( (i,j,k) \) triple (represented as a tuple) corresponding to a column of the Vandermonde matrix when calculating the orthogonal polynomials.
Parameters
degreePolynomial order of this nodal tetrahedron
r\( \xi_1 \)-coordinates of nodal points in the standard element.
s\( \xi_2 \)-coordinates of nodal points in the standard element.
t\( \xi_3 \)-coordinates of nodal points in the standard element.

Definition at line 644 of file NodalUtil.cpp.

647 : NodalUtil(degree, 3), m_eta(3)
648{
649 m_numPoints = r.size();
650 m_xi[0] = r;
651 m_xi[1] = s;
652 m_xi[2] = t;
653
654 for (size_t i = 0; i <= m_degree; ++i)
655 {
656 for (size_t j = 0; j <= m_degree; ++j)
657 {
658 for (size_t k = 0; k <= m_degree - i; ++k)
659 {
660 m_ordering.push_back(Mode(i, j, k));
661 }
662 }
663 }
664
665 // Calculate collapsed coordinates from r/s values
666 m_eta[0] = Array<OneD, NekDouble>(m_numPoints);
667 m_eta[1] = Array<OneD, NekDouble>(m_numPoints);
668 m_eta[2] = Array<OneD, NekDouble>(m_numPoints);
669
670 for (size_t i = 0; i < m_numPoints; ++i)
671 {
672 if (fabs(m_xi[2][i] - 1.0) < NekConstants::kNekZeroTol)
673 {
674 // Very top point of the prism
675 m_eta[0][i] = -1.0;
676 m_eta[1][i] = m_xi[1][i];
677 m_eta[2][i] = 1.0;
678 }
679 else
680 {
681 // Third basis function collapsed to "pr" direction instead of "qr"
682 // direction
683 m_eta[0][i] = 2.0 * (1.0 + m_xi[0][i]) / (1.0 - m_xi[2][i]) - 1.0;
684 m_eta[1][i] = m_xi[1][i];
685 m_eta[2][i] = m_xi[2][i];
686 }
687 }
688}
Array< OneD, Array< OneD, NekDouble > > m_xi
Coordinates of the nodal points defining the basis.
Definition: NodalUtil.h:109
size_t m_degree
Degree of the nodal element.
Definition: NodalUtil.h:105
size_t m_numPoints
Total number of nodal points.
Definition: NodalUtil.h:107
NodalUtil(size_t degree, size_t dim)
Set up the NodalUtil object.
Definition: NodalUtil.h:97
Array< OneD, Array< OneD, NekDouble > > m_eta
Collapsed coordinates of the nodal points.
Definition: NodalUtil.h:281
std::vector< Mode > m_ordering
Mapping from the indexing of the basis to a continuous ordering.
Definition: NodalUtil.h:277
std::tuple< int, int, int > Mode
Definition: NodalUtil.h:263
static const NekDouble kNekZeroTol

References Nektar::NekConstants::kNekZeroTol, Nektar::LibUtilities::NodalUtil::m_degree, m_eta, Nektar::LibUtilities::NodalUtil::m_numPoints, m_ordering, and Nektar::LibUtilities::NodalUtil::m_xi.

◆ ~NodalUtilPrism()

virtual Nektar::LibUtilities::NodalUtilPrism::~NodalUtilPrism ( )
inlinevirtual

Definition at line 270 of file NodalUtil.h.

271 {
272 }

Member Function Documentation

◆ v_CreateUtil()

virtual std::shared_ptr< NodalUtil > Nektar::LibUtilities::NodalUtilPrism::v_CreateUtil ( Array< OneD, Array< OneD, NekDouble > > &  xi)
inlineoverrideprotectedvirtual

Construct a NodalUtil object of the appropriate element type for a given set of points.

This function is used inside NodalUtil::GetInterpolationMatrix so that the (potentially non-square) Vandermonde matrix can be constructed to create the interpolation matrix at an arbitrary set of points in the domain.

Parameters
xiDistribution of nodal points to create utility with.

Implements Nektar::LibUtilities::NodalUtil.

Definition at line 287 of file NodalUtil.h.

289 {
291 xi[1], xi[2]);
292 }
static std::shared_ptr< DataType > AllocateSharedPtr(const Args &...args)
Allocate a shared pointer from the memory pool.

References Nektar::MemoryManager< DataType >::AllocateSharedPtr(), and Nektar::LibUtilities::NodalUtil::m_degree.

◆ v_ModeZeroIntegral()

virtual NekDouble Nektar::LibUtilities::NodalUtilPrism::v_ModeZeroIntegral ( )
inlineoverrideprotectedvirtual

Return the value of the integral of the zero-th mode for this element.

Note that for the orthogonal basis under consideration, all modes integrate to zero asides from the zero-th mode. This function is used in NodalUtil::GetWeights to determine integration weights.

Implements Nektar::LibUtilities::NodalUtil.

Definition at line 294 of file NodalUtil.h.

295 {
296 return 4.0 * sqrt(2.0);
297 }
scalarT< T > sqrt(scalarT< T > in)
Definition: scalar.hpp:294

References tinysimd::sqrt().

◆ v_NumModes()

virtual size_t Nektar::LibUtilities::NodalUtilPrism::v_NumModes ( )
inlineoverrideprotectedvirtual

Calculate the number of degrees of freedom for this element.

Implements Nektar::LibUtilities::NodalUtil.

Definition at line 299 of file NodalUtil.h.

300 {
301 return (m_degree + 1) * (m_degree + 1) * (m_degree + 2) / 2;
302 }

References Nektar::LibUtilities::NodalUtil::m_degree.

◆ v_OrthoBasis()

NekVector< NekDouble > Nektar::LibUtilities::NodalUtilPrism::v_OrthoBasis ( const size_t  mode)
overrideprotectedvirtual

Return the value of the modal functions for the prismatic element at the nodal points m_xi for a given mode.

In a prism, we use the orthogonal basis

\[ \psi_{m(ijk)} = \sqrt{2} P^{(0,0)}_i(\xi_1) P_j^{(0,0)}(\xi_2) P_k^{(2i+1,0)}(\xi_3) (1-\xi_3)^i \]

where \( m(ijk) \) is the mapping defined in m_ordering and \( J_n^{(\alpha,\beta)}(z) \) denotes the standard Jacobi polynomial.

Parameters
modeThe mode of the orthogonal basis to evaluate.
Returns
Vector containing orthogonal basis evaluated at the points m_xi.

Implements Nektar::LibUtilities::NodalUtil.

Definition at line 706 of file NodalUtil.cpp.

707{
708 std::vector<NekDouble> jacA(m_numPoints), jacB(m_numPoints);
709 std::vector<NekDouble> jacC(m_numPoints);
710
711 size_t I, J, K;
712 std::tie(I, J, K) = m_ordering[mode];
713
714 // Calculate Jacobi polynomials
715 Polylib::jacobfd(m_numPoints, &m_eta[0][0], &jacA[0], NULL, I, 0.0, 0.0);
716 Polylib::jacobfd(m_numPoints, &m_eta[1][0], &jacB[0], NULL, J, 0.0, 0.0);
717 Polylib::jacobfd(m_numPoints, &m_eta[2][0], &jacC[0], NULL, K,
718 2.0 * I + 1.0, 0.0);
719
720 NekVector<NekDouble> ret(m_numPoints);
721 NekDouble sqrt2 = sqrt(2.0);
722
723 for (size_t i = 0; i < m_numPoints; ++i)
724 {
725 ret[i] =
726 sqrt2 * jacA[i] * jacB[i] * jacC[i] * pow(1.0 - m_eta[2][i], I);
727 }
728
729 return ret;
730}
double NekDouble
void jacobfd(const int np, const double *z, double *poly_in, double *polyd, const int n, const double alpha, const double beta)
Routine to calculate Jacobi polynomials, , and their first derivative, .
Definition: Polylib.cpp:1206

References Polylib::jacobfd(), m_eta, Nektar::LibUtilities::NodalUtil::m_numPoints, m_ordering, and tinysimd::sqrt().

◆ v_OrthoBasisDeriv()

NekVector< NekDouble > Nektar::LibUtilities::NodalUtilPrism::v_OrthoBasisDeriv ( const size_t  dir,
const size_t  mode 
)
overrideprotectedvirtual

Return the value of the derivative of the modal functions for the prismatic element at the nodal points m_xi for a given mode.

Note that this routine must use the chain rule combined with the collapsed coordinate derivatives as described in Sherwin & Karniadakis (2nd edition), pg 152.

Parameters
modeThe mode of the orthogonal basis to evaluate.
dirCoordinate direction in which to evaluate the derivative.
Returns
Vector containing the derivative of the orthogonal basis evaluated at the points m_xi.

Implements Nektar::LibUtilities::NodalUtil.

Definition at line 746 of file NodalUtil.cpp.

748{
749 std::vector<NekDouble> jacA(m_numPoints), jacB(m_numPoints);
750 std::vector<NekDouble> jacC(m_numPoints);
751 std::vector<NekDouble> jacDerivA(m_numPoints), jacDerivB(m_numPoints);
752 std::vector<NekDouble> jacDerivC(m_numPoints);
753
754 size_t I, J, K;
755 std::tie(I, J, K) = m_ordering[mode];
756
757 // Calculate Jacobi polynomials
758 Polylib::jacobfd(m_numPoints, &m_eta[0][0], &jacA[0], NULL, I, 0.0, 0.0);
759 Polylib::jacobfd(m_numPoints, &m_eta[1][0], &jacB[0], NULL, J, 0.0, 0.0);
760 Polylib::jacobfd(m_numPoints, &m_eta[2][0], &jacC[0], NULL, K,
761 2.0 * I + 1.0, 0.0);
762 Polylib::jacobd(m_numPoints, &m_eta[0][0], &jacDerivA[0], I, 0.0, 0.0);
763 Polylib::jacobd(m_numPoints, &m_eta[1][0], &jacDerivB[0], J, 0.0, 0.0);
764 Polylib::jacobd(m_numPoints, &m_eta[2][0], &jacDerivC[0], K, 2.0 * I + 1.0,
765 0.0);
766
767 NekVector<NekDouble> ret(m_numPoints);
768 NekDouble sqrt2 = sqrt(2.0);
769
770 if (dir == 1)
771 {
772 for (size_t i = 0; i < m_numPoints; ++i)
773 {
774 ret[i] = sqrt2 * jacA[i] * jacDerivB[i] * jacC[i] *
775 pow(1.0 - m_eta[2][i], I);
776 }
777 }
778 else
779 {
780 for (size_t i = 0; i < m_numPoints; ++i)
781 {
782 ret[i] = 2.0 * sqrt2 * jacDerivA[i] * jacB[i] * jacC[i];
783
784 if (I > 0)
785 {
786 ret[i] *= pow(1.0 - m_eta[2][i], I - 1);
787 }
788 }
789
790 if (dir == 0)
791 {
792 return ret;
793 }
794
795 for (size_t i = 0; i < m_numPoints; ++i)
796 {
797 ret[i] *= 0.5 * (1.0 + m_eta[0][i]);
798
799 NekDouble tmp = jacDerivC[i] * pow(1.0 - m_eta[2][i], I);
800
801 if (I > 0)
802 {
803 tmp -= jacC[i] * I * pow(1.0 - m_eta[2][i], I - 1);
804 }
805
806 ret[i] += sqrt2 * jacA[i] * jacB[i] * tmp;
807 }
808 }
809
810 return ret;
811}
void jacobd(const int np, const double *z, double *polyd, const int n, const double alpha, const double beta)
Calculate the derivative of Jacobi polynomials.
Definition: Polylib.cpp:1318

References Polylib::jacobd(), Polylib::jacobfd(), m_eta, Nektar::LibUtilities::NodalUtil::m_numPoints, m_ordering, and tinysimd::sqrt().

Member Data Documentation

◆ m_eta

Array<OneD, Array<OneD, NekDouble> > Nektar::LibUtilities::NodalUtilPrism::m_eta
protected

Collapsed coordinates \( (\eta_1, \eta_2, \eta_3) \) of the nodal points.

Definition at line 281 of file NodalUtil.h.

Referenced by NodalUtilPrism(), v_OrthoBasis(), and v_OrthoBasisDeriv().

◆ m_ordering

std::vector<Mode> Nektar::LibUtilities::NodalUtilPrism::m_ordering
protected

Mapping from the \( (i,j) \) indexing of the basis to a continuous ordering.

Definition at line 277 of file NodalUtil.h.

Referenced by NodalUtilPrism(), v_OrthoBasis(), and v_OrthoBasisDeriv().