65 "Auxiliary functions for the shallow water system.");
82 "No UPWINDTYPE defined in session.");
147 int nvariables = inarray.size();
155 if (inarray != outarray)
159 for (i = 0; i < nvariables; ++i)
175 for (i = 0; i < nvariables; ++i)
177 m_fields[i]->FwdTrans(inarray[i], coeffs);
178 m_fields[i]->BwdTrans(coeffs, outarray[i]);
183 ASSERTL0(
false,
"Unknown projection scheme");
200 for (
int i = 0; i < nvariables; ++i)
203 m_fields[i]->ExtractTracePhys(inarray[i], Fwd[i]);
207 for (
int n = 0; n <
m_fields[0]->GetBndConditions().size(); ++n)
209 if (
m_fields[0]->GetBndConditions()[n]->GetBoundaryConditionType() ==
216 if (boost::iequals(
m_fields[0]->GetBndConditions()[n]->GetUserDefined(),
223 if (
m_fields[0]->GetBndConditions()[n]->IsTimeDependent())
225 for (
int i = 0; i < nvariables; ++i)
228 m_fields[i]->EvaluateBoundaryConditions(time, varName);
231 cnt +=
m_fields[0]->GetBndCondExpansions()[n]->GetExpSize();
243 int e, id1, id2, npts;
249 ->GetBndCondExpansions()[bcRegion]
252 id1 =
m_fields[0]->GetBndCondExpansions()[bcRegion]->GetPhys_Offset(e);
253 id2 =
m_fields[0]->GetTrace()->GetPhys_Offset(
254 m_fields[0]->GetTraceMap()->GetBndCondIDToGlobalTraceID(cnt + e));
272 &tmp_n[0], 1, &tmp_n[0], 1);
277 &tmp_t[0], 1, &tmp_t[0], 1);
286 &Fwd[1][id2], 1, &Fwd[1][id2], 1);
291 &Fwd[2][id2], 1, &Fwd[2][id2], 1);
296 "3D not implemented for Shallow Water Equations");
299 ASSERTL0(
false,
"Illegal expansion dimension");
303 for (i = 0; i < nvariables; ++i)
307 ->GetBndCondExpansions()[bcRegion]
308 ->UpdatePhys())[id1],
319 int nvariables = physarray.size();
323 int e, id1, id2, npts;
329 ->GetBndCondExpansions()[bcRegion]
332 id1 =
m_fields[0]->GetBndCondExpansions()[bcRegion]->GetPhys_Offset(e);
333 id2 =
m_fields[0]->GetTrace()->GetPhys_Offset(
334 m_fields[0]->GetTraceMap()->GetBndCondIDToGlobalTraceID(cnt + e));
343 &tmp[0], 1, &tmp[0], 1);
353 &Fwd[1 + i][id2], 1, &Fwd[1 + i][id2], 1);
357 for (i = 0; i < nvariables; ++i)
361 ->GetBndCondExpansions()[bcRegion]
362 ->UpdatePhys())[id1],
386 m_fields[0]->IProductWRTBase(tmp, mod);
387 m_fields[0]->MultiplyByElmtInvMass(mod, mod);
389 Vmath::Vadd(nq, tmp, 1, outarray[1], 1, outarray[1], 1);
394 m_fields[0]->IProductWRTBase(tmp, mod);
395 m_fields[0]->MultiplyByElmtInvMass(mod, mod);
397 Vmath::Vadd(nq, tmp, 1, outarray[2], 1, outarray[2], 1);
405 Vmath::Vadd(nq, tmp, 1, outarray[1], 1, outarray[1], 1);
410 Vmath::Vadd(nq, tmp, 1, outarray[2], 1, outarray[2], 1);
414 ASSERTL0(
false,
"Unknown projection scheme for the NonlinearSWE");
469 for (
int bcRegion = 0; bcRegion <
m_fields[0]->GetBndConditions().size();
473 ->GetBndConditions()[bcRegion]
487 ->GetBndCondExpansions()[bcRegion]
490 id2 =
m_fields[0]->GetTrace()->GetPhys_Offset(
491 m_fields[0]->GetTraceMap()->GetBndCondIDToGlobalTraceID(cnt +
497 cnt +=
m_fields[0]->GetBndCondExpansions()[bcRegion]->GetExpSize();
#define ASSERTL0(condition, msg)
tKey RegisterCreatorFunction(tKey idKey, CreatorFunction classCreator, std::string pDesc="")
Register a class with the factory.
NekDouble m_g
Acceleration of gravity.
void WallBoundary2D(int bcRegion, int cnt, Array< OneD, Array< OneD, NekDouble > > &Fwd)
void EvaluateWaterDepth(void)
void CopyBoundaryTrace(const Array< OneD, NekDouble > &Fwd, Array< OneD, NekDouble > &Bwd)
Array< OneD, Array< OneD, NekDouble > > m_bottomSlope
void WallBoundary(int bcRegion, int cnt, Array< OneD, Array< OneD, NekDouble > > &Fwd, Array< OneD, Array< OneD, NekDouble > > &physarray)
void SetBoundaryConditions(Array< OneD, Array< OneD, NekDouble > > &physarray, NekDouble time)
void EvaluateCoriolis(void)
void AddCoriolis(const Array< OneD, const Array< OneD, NekDouble > > &physarray, Array< OneD, Array< OneD, NekDouble > > &outarray)
void DoOdeProjection(const Array< OneD, const Array< OneD, NekDouble > > &inarray, Array< OneD, Array< OneD, NekDouble > > &outarray, const NekDouble time)
void PrimitiveToConservative()
bool m_constantDepth
Indicates if constant depth case.
bool m_primitive
Indicates if variables are primitive or conservative.
void v_GenerateSummary(SolverUtils::SummaryList &s) override
Print a summary of time stepping parameters.
ShallowWaterSystem(const LibUtilities::SessionReaderSharedPtr &pSession, const SpatialDomains::MeshGraphSharedPtr &pGraph)
Initialises UnsteadySystem class members.
Array< OneD, NekDouble > m_coriolis
Coriolis force.
Array< OneD, Array< OneD, NekDouble > > m_vecLocs
Array< OneD, NekDouble > m_depth
Still water depth.
static SolverUtils::EquationSystemSharedPtr create(const LibUtilities::SessionReaderSharedPtr &pSession, const SpatialDomains::MeshGraphSharedPtr &pGraph)
Creates an instance of this class.
void v_InitObject(bool DeclareFields=true) override
Init object for UnsteadySystem class.
static std::string className
Name of class.
void ConservativeToPrimitive()
int m_spacedim
Spatial dimension (>= expansion dim).
int m_expdim
Expansion dimension.
SOLVER_UTILS_EXPORT int GetTraceTotPoints()
Array< OneD, MultiRegions::ExpListSharedPtr > m_fields
Array holding all dependent variables.
SOLVER_UTILS_EXPORT int GetExpSize()
LibUtilities::SessionReaderSharedPtr m_session
The session reader.
Array< OneD, Array< OneD, NekDouble > > m_traceNormals
Array holding trace normals for DG simulations in the forwards direction.
SOLVER_UTILS_EXPORT int GetNpoints()
SOLVER_UTILS_EXPORT int GetNcoeffs()
enum MultiRegions::ProjectionType m_projectionType
Type of projection; e.g continuous or discontinuous.
SOLVER_UTILS_EXPORT void SetBoundaryConditions(NekDouble time)
Evaluates the boundary conditions at the given time.
SOLVER_UTILS_EXPORT SessionFunctionSharedPtr GetFunction(std::string name, const MultiRegions::ExpListSharedPtr &field=MultiRegions::NullExpListSharedPtr, bool cache=false)
Get a SessionFunction by name.
SOLVER_UTILS_EXPORT int GetTotPoints()
Base class for unsteady solvers.
SOLVER_UTILS_EXPORT void v_GenerateSummary(SummaryList &s) override
Print a summary of time stepping parameters.
SOLVER_UTILS_EXPORT void v_InitObject(bool DeclareField=true) override
Init object for UnsteadySystem class.
std::shared_ptr< SessionReader > SessionReaderSharedPtr
MultiRegions::Direction const DirCartesianMap[]
@ eMixed_CG_Discontinuous
std::vector< std::pair< std::string, std::string > > SummaryList
EquationSystemFactory & GetEquationSystemFactory()
void AddSummaryItem(SummaryList &l, const std::string &name, const std::string &value)
Adds a summary item to the summary info list.
std::shared_ptr< MeshGraph > MeshGraphSharedPtr
void Vmul(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Multiply vector z = x*y.
void Neg(int n, T *x, const int incx)
Negate x = -x.
void Vvtvp(int n, const T *w, const int incw, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
vvtvp (vector times vector plus vector): z = w*x + y
void Vadd(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Add vector z = x+y.
void Vvtvm(int n, const T *w, const int incw, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
vvtvm (vector times vector minus vector): z = w*x - y
void Smul(int n, const T alpha, const T *x, const int incx, T *y, const int incy)
Scalar multiply y = alpha*x.
void Vdiv(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Multiply vector z = x/y.
void Vcopy(int n, const T *x, const int incx, T *y, const int incy)
void Vsub(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Subtract vector z = x-y.