Nektar++
AdjointAdvection.cpp
Go to the documentation of this file.
1///////////////////////////////////////////////////////////////////////////////
2//
3// File: AdjointAdvection.cpp
4//
5// For more information, please see: http://www.nektar.info
6//
7// The MIT License
8//
9// Copyright (c) 2006 Division of Applied Mathematics, Brown University (USA),
10// Department of Aeronautics, Imperial College London (UK), and Scientific
11// Computing and Imaging Institute, University of Utah (USA).
12//
13// Permission is hereby granted, free of charge, to any person obtaining a
14// copy of this software and associated documentation files (the "Software"),
15// to deal in the Software without restriction, including without limitation
16// the rights to use, copy, modify, merge, publish, distribute, sublicense,
17// and/or sell copies of the Software, and to permit persons to whom the
18// Software is furnished to do so, subject to the following conditions:
19//
20// The above copyright notice and this permission notice shall be included
21// in all copies or substantial portions of the Software.
22//
23// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
24// OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
25// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
26// THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
27// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
28// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
29// DEALINGS IN THE SOFTWARE.
30//
31// Description: Evaluation of the adjoint advective term
32//
33///////////////////////////////////////////////////////////////////////////////
34
36
37using namespace std;
38
39namespace Nektar
40{
41
44 "Adjoint", AdjointAdvection::create);
45
46/**
47 *
48 */
50{
51}
52
54{
55}
56
58 const int nConvectiveFields,
60 const Array<OneD, Array<OneD, NekDouble>> &advVel,
61 const Array<OneD, Array<OneD, NekDouble>> &inarray,
62 Array<OneD, Array<OneD, NekDouble>> &outarray, const NekDouble &time,
63 [[maybe_unused]] const Array<OneD, Array<OneD, NekDouble>> &pFwd,
64 [[maybe_unused]] const Array<OneD, Array<OneD, NekDouble>> &pBwd)
65{
66 ASSERTL1(nConvectiveFields == inarray.size(),
67 "Number of convective fields and Inarray are not compatible");
68
69 int nPointsTot = fields[0]->GetNpoints();
70 int ndim = advVel.size();
71 int nBaseDerivs = (m_halfMode || m_singleMode) ? 2 : m_spacedim;
72 int nDerivs = (m_halfMode) ? 2 : m_spacedim;
73
75 int nScalar = nConvectiveFields - ndim;
77
78 for (int i = 0; i < ndim; ++i)
79 {
80 if (fields[i]->GetWaveSpace() && !m_singleMode && !m_halfMode)
81 {
82 velocity[i] = Array<OneD, NekDouble>(nPointsTot, 0.0);
83 fields[i]->HomogeneousBwdTrans(nPointsTot, advVel[i], velocity[i]);
84 }
85 else
86 {
87 velocity[i] = advVel[i];
88 }
89 }
90 if (nScalar > 0) // add for temperature field
91 {
92 for (int jj = ndim; jj < nConvectiveFields; ++jj)
93 {
94 scalar[jj - ndim] = inarray[jj];
95 }
96 }
97
99 for (int i = 0; i < nDerivs; ++i)
100 {
101 grad[i] = Array<OneD, NekDouble>(nPointsTot);
102 }
103
104 // Evaluation of the base flow for periodic cases
105 if (m_slices > 1)
106 {
107 for (int i = 0; i < ndim; ++i)
108 {
109 UpdateBase(m_interp[i], m_baseflow[i], m_period - time);
110 UpdateGradBase(i, fields[i]);
111 }
112 }
113
114 // Evaluate the linearised advection term
115 for (int i = 0; i < nConvectiveFields; ++i)
116 {
117 // Calculate gradient
118 switch (nDerivs)
119 {
120 case 1:
121 {
122 fields[i]->PhysDeriv(inarray[i], grad[0]);
123 }
124 break;
125 case 2:
126 {
127 fields[i]->PhysDeriv(inarray[i], grad[0], grad[1]);
128 }
129 break;
130 case 3:
131 {
132 fields[i]->PhysDeriv(inarray[i], grad[0], grad[1], grad[2]);
133 if (m_multipleModes)
134 {
135 // transform gradients into physical Fourier space
136 fields[i]->HomogeneousBwdTrans(nPointsTot, grad[0],
137 grad[0]);
138 fields[i]->HomogeneousBwdTrans(nPointsTot, grad[1],
139 grad[1]);
140 fields[i]->HomogeneousBwdTrans(nPointsTot, grad[2],
141 grad[2]);
142 }
143 }
144 break;
145 }
146
147 // Momentum field advection
148 if (i < ndim)
149 {
150 // Calculate -U_j du'_i/dx_j
151 Vmath::Vmul(nPointsTot, grad[0], 1, m_baseflow[0], 1, outarray[i],
152 1);
153 for (int j = 1; j < nDerivs; ++j)
154 {
155 Vmath::Vvtvp(nPointsTot, grad[j], 1, m_baseflow[j], 1,
156 outarray[i], 1, outarray[i], 1);
157 }
158 Vmath::Neg(nPointsTot, outarray[i], 1);
159
160 // Add u'_j U_j/ dx_i
161 int lim = (m_halfMode) ? 2 : ndim;
162 if ((m_halfMode || m_singleMode) && i == 2)
163 {
164 lim = 0;
165 }
166 for (int j = 0; j < lim; ++j)
167 {
168 Vmath::Vvtvp(nPointsTot, m_gradBase[j * nBaseDerivs + i], 1,
169 velocity[j], 1, outarray[i], 1, outarray[i], 1);
170 }
171 // Add Tprime*Grad_Tbase in u, v equations
172 if (nScalar > 0 && i < ndim)
173 {
174 for (int s = 0; s < nScalar; ++s)
175 {
176 Vmath::Vvtvp(nPointsTot,
177 m_gradBase[(ndim + s) * nBaseDerivs + i], 1,
178 scalar[s], 1, outarray[i], 1, outarray[i], 1);
179 }
180 }
181 }
182 // Scalar Field Advection
183 else
184 {
185 // Calculate -U_j du'_i/dx_j
186 Vmath::Vmul(nPointsTot, grad[0], 1, m_baseflow[0], 1, outarray[i],
187 1);
188 for (int j = 1; j < nDerivs; ++j)
189 {
190 Vmath::Vvtvp(nPointsTot, grad[j], 1, m_baseflow[j], 1,
191 outarray[i], 1, outarray[i], 1);
192 }
193 Vmath::Neg(nPointsTot, outarray[i], 1);
194 }
195
196 if (m_multipleModes)
197 {
198 fields[i]->HomogeneousFwdTrans(nPointsTot, outarray[i],
199 outarray[i]);
200 }
201 Vmath::Neg(nPointsTot, outarray[i], 1);
202 }
203}
204
205} // namespace Nektar
#define ASSERTL1(condition, msg)
Assert Level 1 – Debugging which is used whether in FULLDEBUG or DEBUG compilation mode....
Definition: ErrorUtil.hpp:242
void v_Advect(const int nConvectiveFields, const Array< OneD, MultiRegions::ExpListSharedPtr > &fields, const Array< OneD, Array< OneD, NekDouble > > &advVel, const Array< OneD, Array< OneD, NekDouble > > &inarray, Array< OneD, Array< OneD, NekDouble > > &outarray, const NekDouble &time, const Array< OneD, Array< OneD, NekDouble > > &pFwd=NullNekDoubleArrayOfArray, const Array< OneD, Array< OneD, NekDouble > > &pBwd=NullNekDoubleArrayOfArray) override
Advects a vector field.
static std::string className
Name of class.
static SolverUtils::AdvectionSharedPtr create(std::string)
Creates an instance of this class.
tKey RegisterCreatorFunction(tKey idKey, CreatorFunction classCreator, std::string pDesc="")
Register a class with the factory.
void UpdateBase(const Array< OneD, const NekDouble > &inarray, Array< OneD, NekDouble > &outarray, const NekDouble time)
NekDouble m_period
period length
void UpdateGradBase(const int var, const MultiRegions::ExpListSharedPtr &field)
bool m_singleMode
flag to determine if use single mode or not
Array< OneD, Array< OneD, NekDouble > > m_baseflow
Storage for base flow.
Array< OneD, Array< OneD, NekDouble > > m_gradBase
bool m_multipleModes
flag to determine if use multiple mode or not
bool m_halfMode
flag to determine if use half mode or not
Array< OneD, Array< OneD, NekDouble > > m_interp
interpolation vector
AdvectionFactory & GetAdvectionFactory()
Gets the factory for initialising advection objects.
Definition: Advection.cpp:43
double NekDouble
void Vmul(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Multiply vector z = x*y.
Definition: Vmath.hpp:72
void Neg(int n, T *x, const int incx)
Negate x = -x.
Definition: Vmath.hpp:292
void Vvtvp(int n, const T *w, const int incw, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
vvtvp (vector times vector plus vector): z = w*x + y
Definition: Vmath.hpp:366
STL namespace.