Nektar++
AlievPanfilov.cpp
Go to the documentation of this file.
1///////////////////////////////////////////////////////////////////////////////
2//
3// File: AlievPanfilov.cpp
4//
5// For more information, please see: http://www.nektar.info
6//
7// The MIT License
8//
9// Copyright (c) 2006 Division of Applied Mathematics, Brown University (USA),
10// Department of Aeronautics, Imperial College London (UK), and Scientific
11// Computing and Imaging Institute, University of Utah (USA).
12//
13// Permission is hereby granted, free of charge, to any person obtaining a
14// copy of this software and associated documentation files (the "Software"),
15// to deal in the Software without restriction, including without limitation
16// the rights to use, copy, modify, merge, publish, distribute, sublicense,
17// and/or sell copies of the Software, and to permit persons to whom the
18// Software is furnished to do so, subject to the following conditions:
19//
20// The above copyright notice and this permission notice shall be included
21// in all copies or substantial portions of the Software.
22//
23// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
24// OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
25// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
26// THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
27// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
28// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
29// DEALINGS IN THE SOFTWARE.
30//
31// Description: Aliev-Panfilov phenomological cell model.
32//
33///////////////////////////////////////////////////////////////////////////////
34
35#include <iostream>
36#include <string>
37
40
41namespace Nektar
42{
43/**
44 * Registers the class with the Factory.
45 */
48 "AlievPanfilov", CellModelAlievPanfilov::create,
49 "Phenomological model of canine cardiac electrophysiology.");
50
54 : CellModel(pSession, pField)
55{
56 pSession->LoadParameter("k", m_k, 0.0);
57 pSession->LoadParameter("a", m_a, 0.0);
58 pSession->LoadParameter("mu1", m_mu1, 0.0);
59 pSession->LoadParameter("mu2", m_mu2, 0.0);
60 pSession->LoadParameter("eps", m_eps, 0.0);
61
66
67 m_nvar = 2;
68 m_concentrations.push_back(1);
69}
70
72 const Array<OneD, const Array<OneD, NekDouble>> &inarray,
74 [[maybe_unused]] const NekDouble time)
75{
76 // inarray[0] holds initial physical u values throughout
77 // inarray[1] holds initial physical v values throughout
78
79 // compute u^2: m_u = u*u
80 Vmath::Vmul(m_nq, &inarray[0][0], 1, &inarray[0][0], 1, &m_uu[0], 1);
81
82 // compute u^3: m_u = u*u*u
83 Vmath::Vmul(m_nq, &inarray[0][0], 1, &m_uu[0], 1, &m_uuu[0], 1);
84
85 // --------------------------------------
86 // Compute reaction term f(u,v)
87 // --------------------------------------
88 // if (m_spatialParameters->Exists("a"))
89 // {
90 // Vmath::Vmul(m_nq,
91 // &m_spatialParameters->GetData("a")->GetPhys()[0], 1,
92 // &inarray[0][0], 1, &m_tmp1[0], 1);
93 //
94 // Vmath::Vvtvm(m_nq,
95 // &m_spatialParameters->GetData("a")->GetPhys()[0], 1,
96 // &m_uu[0], 1, &m_tmp1[0], 1, &m_tmp1[0], 1);
97 //
98 // Vmath::Svtvm(m_nq, -1.0, &m_uu[0], 1, &m_tmp1[0], 1, &m_tmp1[0],
99 // 1);
100 // }
101 // else
102 // {
103 // Ru = au
104 Vmath::Smul(m_nq, m_a, &inarray[0][0], 1, &m_tmp1[0], 1);
105 // Ru = (-1-a)u*u + au
106 Vmath::Svtvp(m_nq, (-1.0 - m_a), &m_uu[0], 1, &m_tmp1[0], 1, &m_tmp1[0], 1);
107 // }
108 // Ru = u*u*u - (1+a)u*u + au
109 Vmath::Vadd(m_nq, &m_uuu[0], 1, &m_tmp1[0], 1, &m_tmp1[0], 1);
110 // Ru = k(u*u*u - (1+a)u*u + au)
111 // if (m_spatialParameters->Exists("k"))
112 // {
113 // Vmath::Vmul(m_nq,
114 // &m_spatialParameters->GetData("k")->GetPhys()[0], 1,
115 // &m_tmp1[0], 1, &m_tmp1[0], 1);
116 // }
117 // else
118 // {
119 Vmath::Smul(m_nq, m_k, &m_tmp1[0], 1, &m_tmp1[0], 1);
120 // }
121
122 // Ru = k(u*u*u - (1+a)u*u + au) + I_stim
123 Vmath::Vadd(m_nq, &outarray[0][0], 1, &m_tmp1[0], 1, &outarray[0][0], 1);
124
125 // Ru = k(u*u*u - (1+a)u*u + au) + uv + I_stim
126 Vmath::Vvtvp(m_nq, &inarray[0][0], 1, &inarray[1][0], 1, &m_tmp1[0], 1,
127 &outarray[0][0], 1);
128 // Ru = -k(u*u*u - (1+a)u*u + au) - uv - I_stim
129 Vmath::Neg(m_nq, &outarray[0][0], 1);
130
131 // --------------------------------------
132 // Compute reaction term g(u,v)
133 // --------------------------------------
134 // tmp2 = mu2 + u
135 Vmath::Sadd(m_nq, m_mu2, &inarray[0][0], 1, &m_tmp2[0], 1);
136
137 // tmp2 = v/(mu2 + u)
138 Vmath::Vdiv(m_nq, &inarray[1][0], 1, &m_tmp2[0], 1, &m_tmp2[0], 1);
139
140 // tmp2 = mu1*v/(mu2 + u)
141 Vmath::Smul(m_nq, m_mu1, &m_tmp2[0], 1, &m_tmp2[0], 1);
142
143 // tmp1 = Eps + mu1*v/(mu2+u)
144 Vmath::Sadd(m_nq, m_eps, &m_tmp2[0], 1, &m_tmp2[0], 1);
145
146 // tmp1 = (-a-1) + u
147 // if (m_spatialParameters->Exists("a"))
148 // {
149 // Vmath::Vsub(m_nq, &inarray[0][0], 1,
150 // &m_spatialParameters->GetData("a")->GetPhys()[0],
151 // 1, &m_tmp1[0], 1);
152 //
153 // Vmath::Sadd(m_nq, -1.0, &inarray[0][0], 1, &m_tmp1[0], 1);
154 // }
155 // else
156 // {
157 Vmath::Sadd(m_nq, (-m_a - 1), &inarray[0][0], 1, &m_tmp1[0], 1);
158 // }
159
160 // tmp1 = k(u-a-1)
161 // if (m_spatialParameters->Exists("k"))
162 // {
163 // Vmath::Vmul(m_nq,
164 // &m_spatialParameters->GetData("k")->GetPhys()[0], 1,
165 // &m_tmp1[0], 1, &m_tmp1[0], 1);
166 // }
167 // else
168 // {
169 Vmath::Smul(m_nq, m_k, &m_tmp1[0], 1, &m_tmp1[0], 1);
170 // }
171
172 // tmp1 = ku(u-a-1) + v
173 Vmath::Vvtvp(m_nq, &inarray[0][0], 1, &m_tmp1[0], 1, &inarray[1][0], 1,
174 &m_tmp1[0], 1);
175
176 // tmp1 = -ku(u-a-1)-v
177 Vmath::Neg(m_nq, &m_tmp1[0], 1);
178
179 // outarray = [Eps + mu1*v/(mu2+u)] * [-ku(u-a-1)-v]
180 Vmath::Vmul(m_nq, &m_tmp1[0], 1, &m_tmp2[0], 1, &outarray[1][0], 1);
181}
182
183/**
184 *
185 */
187{
188 SolverUtils::AddSummaryItem(s, "Cell model", "Aliev-Panfilov");
194}
195
196/**
197 *
198 */
200{
201 Vmath::Fill(m_nq, 0.0, m_cellSol[0], 1);
202 Vmath::Fill(m_nq, 0.0, m_cellSol[1], 1);
203}
204} // namespace Nektar
Array< OneD, NekDouble > m_tmp1
Workspace for computing reaction term.
Definition: AlievPanfilov.h:91
CellModelAlievPanfilov(const LibUtilities::SessionReaderSharedPtr &pSession, const MultiRegions::ExpListSharedPtr &pField)
static std::string className
Name of class.
Definition: AlievPanfilov.h:56
Array< OneD, NekDouble > m_uuu
Temporary space for storing when computing reaction term.
Definition: AlievPanfilov.h:89
void v_GenerateSummary(SummaryList &s) override
Array< OneD, NekDouble > m_uu
Temporary space for storing when computing reaction term.
Definition: AlievPanfilov.h:87
void v_Update(const Array< OneD, const Array< OneD, NekDouble > > &inarray, Array< OneD, Array< OneD, NekDouble > > &outarray, const NekDouble time) override
static CellModelSharedPtr create(const LibUtilities::SessionReaderSharedPtr &pSession, const MultiRegions::ExpListSharedPtr &pField)
Creates an instance of this class.
Definition: AlievPanfilov.h:47
NekDouble m_a
Trigger parameter a.
Definition: AlievPanfilov.h:76
NekDouble m_k
Scaling parameter k.
Definition: AlievPanfilov.h:78
void v_SetInitialConditions() override
NekDouble m_mu1
Restitution parameter .
Definition: AlievPanfilov.h:80
Array< OneD, NekDouble > m_tmp2
Workspace for computing reaction term.
Definition: AlievPanfilov.h:93
NekDouble m_eps
Restitution parameter .
Definition: AlievPanfilov.h:84
NekDouble m_mu2
Restitution parameter .
Definition: AlievPanfilov.h:82
Cell model base class.
Definition: CellModel.h:66
Array< OneD, Array< OneD, NekDouble > > m_cellSol
Cell model solution variables.
Definition: CellModel.h:126
std::vector< int > m_concentrations
Indices of cell model variables which are concentrations.
Definition: CellModel.h:139
size_t m_nq
Number of physical points.
Definition: CellModel.h:117
size_t m_nvar
Number of variables in cell model (inc. transmembrane voltage)
Definition: CellModel.h:119
tKey RegisterCreatorFunction(tKey idKey, CreatorFunction classCreator, std::string pDesc="")
Register a class with the factory.
std::shared_ptr< SessionReader > SessionReaderSharedPtr
std::shared_ptr< ExpList > ExpListSharedPtr
Shared pointer to an ExpList object.
std::vector< std::pair< std::string, std::string > > SummaryList
Definition: Misc.h:46
void AddSummaryItem(SummaryList &l, const std::string &name, const std::string &value)
Adds a summary item to the summary info list.
Definition: Misc.cpp:47
CellModelFactory & GetCellModelFactory()
Definition: CellModel.cpp:46
double NekDouble
void Vmul(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Multiply vector z = x*y.
Definition: Vmath.hpp:72
void Svtvp(int n, const T alpha, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Svtvp (scalar times vector plus vector): z = alpha*x + y.
Definition: Vmath.hpp:396
void Neg(int n, T *x, const int incx)
Negate x = -x.
Definition: Vmath.hpp:292
void Vvtvp(int n, const T *w, const int incw, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
vvtvp (vector times vector plus vector): z = w*x + y
Definition: Vmath.hpp:366
void Vadd(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Add vector z = x+y.
Definition: Vmath.hpp:180
void Smul(int n, const T alpha, const T *x, const int incx, T *y, const int incy)
Scalar multiply y = alpha*x.
Definition: Vmath.hpp:100
void Vdiv(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Multiply vector z = x/y.
Definition: Vmath.hpp:126
void Fill(int n, const T alpha, T *x, const int incx)
Fill a vector with a constant value.
Definition: Vmath.hpp:54
void Sadd(int n, const T alpha, const T *x, const int incx, T *y, const int incy)
Add vector y = alpha + x.
Definition: Vmath.hpp:194