Nektar++
AlternateSkewAdvection.cpp
Go to the documentation of this file.
1///////////////////////////////////////////////////////////////////////////////
2//
3// File: AlternateSkewAdvection.cpp
4//
5// For more information, please see: http://www.nektar.info
6//
7// The MIT License
8//
9// Copyright (c) 2006 Division of Applied Mathematics, Brown University (USA),
10// Department of Aeronautics, Imperial College London (UK), and Scientific
11// Computing and Imaging Institute, University of Utah (USA).
12//
13// Permission is hereby granted, free of charge, to any person obtaining a
14// copy of this software and associated documentation files (the "Software"),
15// to deal in the Software without restriction, including without limitation
16// the rights to use, copy, modify, merge, publish, distribute, sublicense,
17// and/or sell copies of the Software, and to permit persons to whom the
18// Software is furnished to do so, subject to the following conditions:
19//
20// The above copyright notice and this permission notice shall be included
21// in all copies or substantial portions of the Software.
22//
23// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
24// OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
25// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
26// THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
27// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
28// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
29// DEALINGS IN THE SOFTWARE.
30//
31// Description: Evaluation of the Navier Stokes advective term
32//
33///////////////////////////////////////////////////////////////////////////////
34
36
37using namespace std;
38
39namespace Nektar
40{
41
44 "AlternateSkew", AlternateSkewAdvection::create,
45 "Alternating Skew Symmetric");
46
47/**
48 * Constructor. Creates ...
49 *
50 * \param
51 * \param
52 */
54{
55}
56
58{
59}
60
63 [[maybe_unused]] Array<OneD, MultiRegions::ExpListSharedPtr> fields)
64{
65 pSession->MatchSolverInfo("ModeType", "SingleMode", m_SingleMode, false);
66 pSession->MatchSolverInfo("ModeType", "HalfMode", m_HalfMode, false);
67}
68
70 const int nConvectiveFields,
72 const Array<OneD, Array<OneD, NekDouble>> &advVel,
73 const Array<OneD, Array<OneD, NekDouble>> &inarray,
75 [[maybe_unused]] const NekDouble &time,
76 [[maybe_unused]] const Array<OneD, Array<OneD, NekDouble>> &pFwd,
77 [[maybe_unused]] const Array<OneD, Array<OneD, NekDouble>> &pBwd)
78{
79 // use dimension of Velocity vector to dictate dimension of operation
80 int ndim = advVel.size();
81 int nPointsTot = fields[0]->GetNpoints();
83 for (int i = 0; i < ndim; ++i)
84 {
85 if (fields[i]->GetWaveSpace() && !m_SingleMode && !m_HalfMode)
86 {
87 velocity[i] = Array<OneD, NekDouble>(nPointsTot, 0.0);
88 fields[i]->HomogeneousBwdTrans(nPointsTot, advVel[i], velocity[i]);
89 }
90 else
91 {
92 velocity[i] = advVel[i];
93 }
94 }
95 for (int n = 0; n < nConvectiveFields; ++n)
96 {
97 // ToDo: here we should add a check that V has right dimension
98 Array<OneD, NekDouble> gradV0, gradV1, gradV2, tmp, Up;
99
100 gradV0 = Array<OneD, NekDouble>(nPointsTot);
101 tmp = Array<OneD, NekDouble>(nPointsTot);
102
103 // Evaluate V\cdot Grad(u)
104 switch (ndim)
105 {
106 case 1:
107 if (m_advectioncalls % 2 == 0)
108 {
109 fields[0]->PhysDeriv(inarray[n], gradV0);
110 Vmath::Vmul(nPointsTot, gradV0, 1, velocity[0], 1,
111 outarray[n], 1);
112 }
113 else
114 {
115 Vmath::Vmul(nPointsTot, inarray[n], 1, velocity[0], 1,
116 gradV0, 1);
117 fields[0]->PhysDeriv(gradV0, outarray[n]);
118 }
119 Vmath::Smul(nPointsTot, 0.5, outarray[n], 1, outarray[n],
120 1); // must be mult by 0.5????
121 break;
122 case 2:
123 gradV1 = Array<OneD, NekDouble>(nPointsTot);
124 if (m_advectioncalls % 2 == 0)
125 {
126 fields[0]->PhysDeriv(inarray[n], gradV0, gradV1);
127 Vmath::Vmul(nPointsTot, gradV0, 1, velocity[0], 1,
128 outarray[n], 1);
129 Vmath::Vvtvp(nPointsTot, gradV1, 1, velocity[1], 1,
130 outarray[n], 1, outarray[n], 1);
131 }
132 else
133 {
134 Vmath::Vmul(nPointsTot, inarray[n], 1, velocity[0], 1,
135 gradV0, 1);
136 Vmath::Vmul(nPointsTot, inarray[n], 1, velocity[1], 1,
137 gradV1, 1);
138 fields[0]->PhysDeriv(MultiRegions::DirCartesianMap[0],
139 gradV0, outarray[n]);
140 fields[0]->PhysDeriv(MultiRegions::DirCartesianMap[1],
141 gradV1, tmp);
142 Vmath::Vadd(nPointsTot, tmp, 1, outarray[n], 1, outarray[n],
143 1);
144 }
145 Vmath::Smul(nPointsTot, 1.0, outarray[n], 1, outarray[n],
146 1); // must be mult by 0.5????
147 break;
148 case 3:
149 gradV1 = Array<OneD, NekDouble>(nPointsTot);
150 gradV2 = Array<OneD, NekDouble>(nPointsTot);
151
152 // outarray[n] = 1/2(u*du/dx + v*du/dy + w*du/dz + duu/dx +
153 // duv/dy + duw/dz)
154
155 if (fields[0]->GetWaveSpace() == true)
156 {
157 if (m_advectioncalls % 2 == 0)
158 {
159 // vector reused to avoid even more memory requirements
160 // names may be misleading
161 fields[0]->PhysDeriv(inarray[n], gradV0, gradV1,
162 gradV2);
163 fields[0]->HomogeneousBwdTrans(nPointsTot, gradV0, tmp);
164 Vmath::Vmul(nPointsTot, tmp, 1, velocity[0], 1,
165 outarray[n], 1); // + u*du/dx
166 fields[0]->HomogeneousBwdTrans(nPointsTot, gradV1, tmp);
167 Vmath::Vvtvp(nPointsTot, tmp, 1, velocity[1], 1,
168 outarray[n], 1, outarray[n],
169 1); // + v*du/dy
170 fields[0]->HomogeneousBwdTrans(nPointsTot, gradV2, tmp);
171 Vmath::Vvtvp(nPointsTot, tmp, 1, velocity[2], 1,
172 outarray[n], 1, outarray[n],
173 1); // + w*du/dz
174 }
175 else
176 {
177 Up = Array<OneD, NekDouble>(nPointsTot);
178 fields[0]->HomogeneousBwdTrans(nPointsTot, inarray[n],
179 Up);
180 Vmath::Vmul(nPointsTot, Up, 1, velocity[0], 1, gradV0,
181 1);
182 Vmath::Vmul(nPointsTot, Up, 1, velocity[1], 1, gradV1,
183 1);
184 Vmath::Vmul(nPointsTot, Up, 1, velocity[2], 1, gradV2,
185 1);
186
187 fields[0]->SetWaveSpace(false);
188 fields[0]->PhysDeriv(MultiRegions::DirCartesianMap[0],
189 gradV0, outarray[n]); // duu/dx
190 fields[0]->PhysDeriv(MultiRegions::DirCartesianMap[1],
191 gradV1, tmp); // duv/dy
192 Vmath::Vadd(nPointsTot, tmp, 1, outarray[n], 1,
193 outarray[n], 1);
194 fields[0]->PhysDeriv(MultiRegions::DirCartesianMap[2],
195 gradV2, tmp); // duw/dz
196 Vmath::Vadd(nPointsTot, tmp, 1, outarray[n], 1,
197 outarray[n], 1);
198 fields[0]->SetWaveSpace(true);
199 }
200
201 Vmath::Smul(nPointsTot, 1.0, outarray[n], 1, tmp,
202 1); // must be mult by 0.5????
203 fields[0]->HomogeneousFwdTrans(nPointsTot, tmp,
204 outarray[n]);
205 }
206 else
207 {
208 if (m_advectioncalls % 2 == 0)
209 {
210 fields[0]->PhysDeriv(inarray[n], gradV0, gradV1,
211 gradV2);
212 Vmath::Vmul(nPointsTot, gradV0, 1, velocity[0], 1,
213 outarray[n], 1);
214 Vmath::Vvtvp(nPointsTot, gradV1, 1, velocity[1], 1,
215 outarray[n], 1, outarray[n], 1);
216 Vmath::Vvtvp(nPointsTot, gradV2, 1, velocity[2], 1,
217 outarray[n], 1, outarray[n], 1);
218 }
219 else
220 {
221 Vmath::Vmul(nPointsTot, inarray[n], 1, velocity[0], 1,
222 gradV0, 1);
223 Vmath::Vmul(nPointsTot, inarray[n], 1, velocity[1], 1,
224 gradV1, 1);
225 Vmath::Vmul(nPointsTot, inarray[n], 1, velocity[2], 1,
226 gradV2, 1);
227 fields[0]->PhysDeriv(MultiRegions::DirCartesianMap[0],
228 gradV0, outarray[n]);
229 fields[0]->PhysDeriv(MultiRegions::DirCartesianMap[1],
230 gradV1, tmp);
231 Vmath::Vadd(nPointsTot, tmp, 1, outarray[n], 1,
232 outarray[n], 1);
233 fields[0]->PhysDeriv(MultiRegions::DirCartesianMap[2],
234 gradV2, tmp);
235 Vmath::Vadd(nPointsTot, tmp, 1, outarray[n], 1,
236 outarray[n], 1);
237 }
238 Vmath::Smul(nPointsTot, 1.0, outarray[n], 1, outarray[n],
239 1); // must be mult by 0.5????
240 }
241 break;
242 default:
243 ASSERTL0(false, "dimension unknown");
244 }
245 }
246}
247
248} // namespace Nektar
#define ASSERTL0(condition, msg)
Definition: ErrorUtil.hpp:208
static SolverUtils::AdvectionSharedPtr create(std::string)
Creates an instance of this class.
void v_Advect(const int nConvectiveFields, const Array< OneD, MultiRegions::ExpListSharedPtr > &fields, const Array< OneD, Array< OneD, NekDouble > > &advVel, const Array< OneD, Array< OneD, NekDouble > > &inarray, Array< OneD, Array< OneD, NekDouble > > &outarray, const NekDouble &time, const Array< OneD, Array< OneD, NekDouble > > &pFwd=NullNekDoubleArrayOfArray, const Array< OneD, Array< OneD, NekDouble > > &pBwd=NullNekDoubleArrayOfArray) override
Advects a vector field.
void v_InitObject(LibUtilities::SessionReaderSharedPtr pSession, Array< OneD, MultiRegions::ExpListSharedPtr > pFields) override
Initialises the advection object.
static std::string className
Name of class.
tKey RegisterCreatorFunction(tKey idKey, CreatorFunction classCreator, std::string pDesc="")
Register a class with the factory.
An abstract base class encapsulating the concept of advection of a vector field.
Definition: Advection.h:81
std::shared_ptr< SessionReader > SessionReaderSharedPtr
MultiRegions::Direction const DirCartesianMap[]
Definition: ExpList.h:87
AdvectionFactory & GetAdvectionFactory()
Gets the factory for initialising advection objects.
Definition: Advection.cpp:43
double NekDouble
void Vmul(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Multiply vector z = x*y.
Definition: Vmath.hpp:72
void Vvtvp(int n, const T *w, const int incw, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
vvtvp (vector times vector plus vector): z = w*x + y
Definition: Vmath.hpp:366
void Vadd(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Add vector z = x+y.
Definition: Vmath.hpp:180
void Smul(int n, const T alpha, const T *x, const int incx, T *y, const int incy)
Scalar multiply y = alpha*x.
Definition: Vmath.hpp:100
STL namespace.