Nektar++
ForcingAxiSymmetric.cpp
Go to the documentation of this file.
1///////////////////////////////////////////////////////////////////////////////
2//
3// File: ForcingAxiSymmetric.cpp
4//
5// For more information, please see: http://www.nektar.info
6//
7// The MIT License
8//
9// Copyright (c) 2006 Division of Applied Mathematics, Brown University (USA),
10// Department of Aeronautics, Imperial College London (UK), and Scientific
11// Computing and Imaging Institute, University of Utah (USA).
12//
13// Permission is hereby granted, free of charge, to any person obtaining a
14// copy of this software and associated documentation files (the "Software"),
15// to deal in the Software without restriction, including without limitation
16// the rights to use, copy, modify, merge, publish, distribute, sublicense,
17// and/or sell copies of the Software, and to permit persons to whom the
18// Software is furnished to do so, subject to the following conditions:
19//
20// The above copyright notice and this permission notice shall be included
21// in all copies or substantial portions of the Software.
22//
23// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
24// OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
25// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
26// THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
27// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
28// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
29// DEALINGS IN THE SOFTWARE.
30//
31// Description: Forcing for axi-symmetric flow.
32//
33///////////////////////////////////////////////////////////////////////////////
34
36
37using namespace std;
38
39namespace Nektar
40{
43 "AxiSymmetric", ForcingAxiSymmetric::create,
44 "Forcing for axi-symmetric flow (around x=0)");
45
48 const std::weak_ptr<SolverUtils::EquationSystem> &pEquation)
49 : Forcing(pSession, pEquation)
50{
51}
52
55 const unsigned int &pNumForcingFields,
56 [[maybe_unused]] const TiXmlElement *pForce)
57{
58 int spacedim = pFields[0]->GetGraph()->GetSpaceDimension();
59 int nPoints = pFields[0]->GetTotPoints();
60
61 m_NumVariable = pNumForcingFields;
63 spacedim);
64
65 // Get coordinates
67 for (int i = 0; i < 3; i++)
68 {
69 coords[i] = Array<OneD, NekDouble>(nPoints);
70 }
71 pFields[0]->GetCoords(coords[0], coords[1], coords[2]);
72
73 // Calculate fac = -1/r if r!=0, fac = 0 if r == 0
75 for (int i = 0; i < nPoints; ++i)
76 {
77 if (coords[0][i] < NekConstants::kNekZeroTol)
78 {
79 m_geomFactor[i] = 0;
80 }
81 else
82 {
83 m_geomFactor[i] = -1.0 / coords[0][i];
84 }
85 }
86
87 // Project m_geomFactor to solution space
89 for (int i = 0; i < m_NumVariable; ++i)
90 {
91 m_Forcing[i] = Array<OneD, NekDouble>(pFields[0]->GetTotPoints(), 0.0);
92 }
93}
94
97 const Array<OneD, Array<OneD, NekDouble>> &inarray,
99 [[maybe_unused]] const NekDouble &time)
100{
101 int nPoints = pFields[0]->GetTotPoints();
102
103 // Get (E+p)
104 Array<OneD, NekDouble> tmp(nPoints, 0.0);
105 m_varConv->GetPressure(inarray, tmp);
106 Vmath::Vadd(nPoints, tmp, 1, inarray[m_NumVariable - 1], 1, tmp, 1);
107
108 // F-rho = -1/r *rhou
109 Vmath::Vmul(nPoints, m_geomFactor, 1, inarray[1], 1, m_Forcing[0], 1);
110
111 // F-rhou_r = -1/r *rhou_r * u_r and F-rhou_y = -1/r *rhou_y * u_r
112 for (int i = 1; i < 3; ++i)
113 {
114 Vmath::Vmul(nPoints, inarray[1], 1, inarray[i], 1, m_Forcing[i], 1);
115 Vmath::Vdiv(nPoints, m_Forcing[i], 1, inarray[0], 1, m_Forcing[i], 1);
116 Vmath::Vmul(nPoints, m_Forcing[i], 1, m_geomFactor, 1, m_Forcing[i], 1);
117 }
118
119 // F-E = -1/r *(E+p)*u
120 Vmath::Vmul(nPoints, inarray[1], 1, tmp, 1, m_Forcing[m_NumVariable - 1],
121 1);
122 Vmath::Vdiv(nPoints, m_Forcing[m_NumVariable - 1], 1, inarray[0], 1,
123 m_Forcing[m_NumVariable - 1], 1);
124 Vmath::Vmul(nPoints, m_Forcing[m_NumVariable - 1], 1, m_geomFactor, 1,
125 m_Forcing[m_NumVariable - 1], 1);
126
127 // Swirl
128 if (m_NumVariable == 5)
129 {
130 // F-rhou_r -= (-1/r) * rho * u_theta * u_theta
131 Vmath::Vmul(nPoints, inarray[3], 1, inarray[3], 1, tmp, 1);
132 Vmath::Vdiv(nPoints, tmp, 1, inarray[0], 1, tmp, 1);
133 Vmath::Vmul(nPoints, tmp, 1, m_geomFactor, 1, tmp, 1);
134 Vmath::Vsub(nPoints, m_Forcing[1], 1, tmp, 1, m_Forcing[1], 1);
135
136 // F-rhou_theta = 2 * (-1/r *rhou_theta * u_r)
137 Vmath::Vmul(nPoints, inarray[1], 1, inarray[3], 1, m_Forcing[3], 1);
138 Vmath::Vdiv(nPoints, m_Forcing[3], 1, inarray[0], 1, m_Forcing[3], 1);
139 Vmath::Vmul(nPoints, m_Forcing[3], 1, m_geomFactor, 1, m_Forcing[3], 1);
140 Vmath::Smul(nPoints, 2.0, m_Forcing[3], 1, m_Forcing[3], 1);
141 }
142
143 // Apply forcing
144 for (int i = 0; i < m_NumVariable; i++)
145 {
146 Vmath::Vadd(nPoints, outarray[i], 1, m_Forcing[i], 1, outarray[i], 1);
147 }
148}
149
150} // namespace Nektar
void v_Apply(const Array< OneD, MultiRegions::ExpListSharedPtr > &fields, const Array< OneD, Array< OneD, NekDouble > > &inarray, Array< OneD, Array< OneD, NekDouble > > &outarray, const NekDouble &time) override
VariableConverterSharedPtr m_varConv
static std::string className
Name of the class.
Array< OneD, NekDouble > m_geomFactor
void v_InitObject(const Array< OneD, MultiRegions::ExpListSharedPtr > &pFields, const unsigned int &pNumForcingFields, const TiXmlElement *pForce) override
ForcingAxiSymmetric(const LibUtilities::SessionReaderSharedPtr &pSession, const std::weak_ptr< SolverUtils::EquationSystem > &pEquation)
static SolverUtils::ForcingSharedPtr create(const LibUtilities::SessionReaderSharedPtr &pSession, const std::weak_ptr< SolverUtils::EquationSystem > &pEquation, const Array< OneD, MultiRegions::ExpListSharedPtr > &pFields, const unsigned int &pNumForcingFields, const TiXmlElement *pForce)
Creates an instance of this class.
tKey RegisterCreatorFunction(tKey idKey, CreatorFunction classCreator, std::string pDesc="")
Register a class with the factory.
static std::shared_ptr< DataType > AllocateSharedPtr(const Args &...args)
Allocate a shared pointer from the memory pool.
Defines a forcing term to be explicitly applied.
Definition: Forcing.h:71
int m_NumVariable
Number of variables.
Definition: Forcing.h:121
Array< OneD, Array< OneD, NekDouble > > m_Forcing
Evaluated forcing function.
Definition: Forcing.h:119
LibUtilities::SessionReaderSharedPtr m_session
Session reader.
Definition: Forcing.h:115
std::shared_ptr< SessionReader > SessionReaderSharedPtr
static const NekDouble kNekZeroTol
ForcingFactory & GetForcingFactory()
Declaration of the forcing factory singleton.
Definition: Forcing.cpp:42
double NekDouble
void Vmul(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Multiply vector z = x*y.
Definition: Vmath.hpp:72
void Vadd(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Add vector z = x+y.
Definition: Vmath.hpp:180
void Smul(int n, const T alpha, const T *x, const int incx, T *y, const int incy)
Scalar multiply y = alpha*x.
Definition: Vmath.hpp:100
void Vdiv(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Multiply vector z = x/y.
Definition: Vmath.hpp:126
void Vsub(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Subtract vector z = x-y.
Definition: Vmath.hpp:220
STL namespace.