89 : m_type(gtype), m_expDim(xmap->GetShapeDimension()), m_coordDim(coordim),
90 m_valid(true), m_xmap(xmap), m_coords(coords)
100 : m_type(S.m_type), m_expDim(S.m_expDim), m_coordDim(S.m_coordDim),
101 m_valid(S.m_valid), m_xmap(S.m_xmap), m_coords(S.m_coords)
137 if (!(jac_lhs == jac_rhs))
157 "Dimension of target point distribution does not match "
158 "expansion dimension.");
162 int nqtot_tbasis = 1;
170 map_points[i] =
m_xmap->GetBasis(i)->GetPointsKey();
171 nqtot_map *= map_points[i].GetNumPoints();
172 nqtot_tbasis *= keyTgt[i].GetNumPoints();
190 m_xmap->StdPhysDeriv(j, tmp, d_map[j][i]);
203 same = same && (map_points[j] == keyTgt[j]);
209 deriv[j][i] = d_map[j][i];
216 Interp(map_points, d_map[j][i], keyTgt, deriv[j][i]);
239 "Dimension of target point distribution does not match "
240 "expansion dimension.");
242 int i = 0, j = 0, k = 0, l = 0;
250 ptsTgt *= keyTgt[i].GetNumPoints();
262 for (i = 0, l = 0; i <
m_expDim; ++i)
268 Vmath::Vvtvp(ptsTgt, &deriv[i][k][0], 1, &deriv[j][k][0], 1,
269 &tmp[l][0], 1, &tmp[l][0], 1);
316 "Dimension of target point distribution does not match "
317 "expansion dimension.");
319 int i = 0, j = 0, k = 0, l = 0;
327 ptsTgt *= keyTgt[i].GetNumPoints();
339 for (i = 0, l = 0; i <
m_expDim; ++i)
345 Vmath::Vvtvp(ptsTgt, &deriv[i][k][0], 1, &deriv[j][k][0], 1,
346 &tmp[l][0], 1, &tmp[l][0], 1);
363 Vmath::Vdiv(ptsTgt, &gmat[i][0], 1, &jac[0], 1, &gmat[i][0], 1);
380 "Dimension of target point distribution does not match "
381 "expansion dimension.");
383 int i = 0, j = 0, k = 0, l = 0;
391 ptsTgt *= keyTgt[i].GetNumPoints();
404 for (i = 0, l = 0; i <
m_expDim; ++i)
410 Vmath::Vvtvp(ptsTgt, &deriv[i][k][0], 1, &deriv[j][k][0], 1,
411 &tmp[l][0], 1, &tmp[l][0], 1);
428 Vmath::Vdiv(ptsTgt, &gmat[i][0], 1, &jac[0], 1, &gmat[i][0], 1);
458 "Dimension of target point distribution does not match "
459 "expansion dimension.");
467 nq *= keyTgt[i].GetNumPoints();
475 ptsTgt *= keyTgt[i].GetNumPoints();
488 for (i = 0; i < MFdim; ++i)
498 for (i = 0; i < MFdim - 1; ++i)
504 Vmath::Vcopy(ptsTgt, &deriv[i][k][0], 1, &MFtmp[i][k][0], 1);
541 Vmath::Vvtvp(nq, MFtmp[2][i], 1, PrincipleDir[i], 1, temp, 1, temp,
549 Vmath::Vvtvp(nq, temp, 1, MFtmp[2][i], 1, PrincipleDir[i], 1,
563 for (i = 0; i < MFdim; ++i)
591 p[i] =
m_xmap->GetBasis(i)->GetPointsKey();
592 nqtot *=
p[i].GetNumPoints();
604 &deriv[1][0][0], 1, &deriv[0][1][0], 1, &jac[0], 1);
612 &deriv[2][1][0], 1, &deriv[1][2][0], 1, &tmp[0], 1);
613 Vmath::Vvtvp(pts, &deriv[0][0][0], 1, &tmp[0], 1, &jac[0], 1,
617 &deriv[0][1][0], 1, &deriv[2][2][0], 1, &tmp[0], 1);
618 Vmath::Vvtvp(pts, &deriv[1][0][0], 1, &tmp[0], 1, &jac[0], 1,
622 &deriv[1][1][0], 1, &deriv[0][2][0], 1, &tmp[0], 1);
623 Vmath::Vvtvp(pts, &deriv[2][0][0], 1, &tmp[0], 1, &jac[0], 1,
647 ASSERTL1(src_points.size() == tgt_points.size(),
648 "Dimension of target point distribution does not match "
649 "expansion dimension.");
658 tgt_points[0], tgt_points[1], tgt);
662 src, tgt_points[0], tgt_points[1],
679 "Source matrix is of different size to destination"
680 "matrix for computing adjoint.");
682 int n = src[0].size();
690 Vmath::Smul(n, -1.0, &src[1][0], 1, &tgt[1][0], 1);
691 Vmath::Smul(n, -1.0, &src[2][0], 1, &tgt[2][0], 1);
696 int a, b, c,
d, e, i, j;
709 1, &src[c][0], 1, &tgt[e][0], 1);
726 int nq = output[0].size();
777 map_points[i] =
m_xmap->GetBasis(i)->GetPointsKey();
778 nqtot_map *= map_points[i].GetNumPoints();
784 Interp(map_points, tmp, keyTgt, x[k]);
788 NekDouble radius, xc = 0.0, yc = 0.0, xdis, ydis;
798 for (
int i = 0; i < nq; i++)
802 radius =
sqrt(xdis * xdis / la / la + ydis * ydis / lb / lb);
803 output[0][i] = ydis / radius;
804 output[1][i] = -1.0 * xdis / radius;
821 map_points[i] =
m_xmap->GetBasis(i)->GetPointsKey();
822 nqtot_map *= map_points[i].GetNumPoints();
828 Interp(map_points, tmp, keyTgt, x[k]);
833 for (
int i = 0; i < nq; i++)
835 xtan = -1.0 * (x[1][i] * x[1][i] * x[1][i] + x[1][i]);
836 ytan = 2.0 * x[0][i];
837 mag =
sqrt(xtan * xtan + ytan * ytan);
838 output[0][i] = xtan / mag;
839 output[1][i] = ytan / mag;
856 map_points[i] =
m_xmap->GetBasis(i)->GetPointsKey();
857 nqtot_map *= map_points[i].GetNumPoints();
863 Interp(map_points, tmp, keyTgt, x[k]);
868 for (
int i = 0; i < nq; i++)
870 xtan = -2.0 * x[1][i] * x[1][i] * x[1][i] + x[1][i];
871 ytan =
sqrt(3.0) * x[0][i];
872 mag =
sqrt(xtan * xtan + ytan * ytan);
873 output[0][i] = xtan / mag;
874 output[1][i] = ytan / mag;
890 int ndim = array.size();
891 ASSERTL0(ndim > 0,
"Number of components must be > 0.");
892 for (
int i = 1; i < ndim; ++i)
894 ASSERTL0(array[i].size() == array[0].size(),
895 "Array size mismatch in coordinates.");
898 int nq = array[0].size();
902 for (
int i = 0; i < ndim; ++i)
904 Vmath::Vvtvp(nq, array[i], 1, array[i], 1, norm, 1, norm, 1);
910 for (
int i = 0; i < ndim; ++i)
912 Vmath::Vdiv(nq, array[i], 1, norm, 1, array[i], 1);
930 ASSERTL0(v1.size() == 3,
"Input 1 has dimension not equal to 3.");
931 ASSERTL0(v2.size() == 3,
"Input 2 has dimension not equal to 3.");
932 ASSERTL0(v3.size() == 3,
"Output vector has dimension not equal to 3.");
934 int nq = v1[0].size();
938 Vmath::Vvtvm(nq, v1[1], 1, v2[2], 1, temp, 1, v3[0], 1);
941 Vmath::Vvtvm(nq, v1[2], 1, v2[0], 1, temp, 1, v3[1], 1);
944 Vmath::Vvtvm(nq, v1[0], 1, v2[1], 1, temp, 1, v3[2], 1);
#define ASSERTL0(condition, msg)
#define ASSERTL1(condition, msg)
Assert Level 1 – Debugging which is used whether in FULLDEBUG or DEBUG compilation mode....
Calculation and storage of geometric factors associated with the mapping from StdRegions reference el...
DerivStorage ComputeDeriv(const LibUtilities::PointsKeyVector &keyTgt) const
Array< TwoD, NekDouble > ComputeDerivFactors(const LibUtilities::PointsKeyVector &keyTgt) const
Return the derivative of the reference coordinates with respect to the mapping, .
void Adjoint(const Array< TwoD, const NekDouble > &src, Array< TwoD, NekDouble > &tgt) const
Compute the transpose of the cofactors matrix.
int m_coordDim
Dimension of coordinate system.
void CheckIfValid()
Tests if the element is valid and not self-intersecting.
void Interp(const LibUtilities::PointsKeyVector &src_points, const Array< OneD, const NekDouble > &src, const LibUtilities::PointsKeyVector &tgt_points, Array< OneD, NekDouble > &tgt) const
Perform interpolation of data between two point distributions.
Array< OneD, NekDouble > ComputeJac(const LibUtilities::PointsKeyVector &keyTgt) const
Return the Jacobian of the mapping and cache the result.
int m_expDim
Dimension of expansion.
Array< TwoD, NekDouble > ComputeGmat(const LibUtilities::PointsKeyVector &keyTgt) const
Computes the Laplacian coefficients .
void ComputePrincipleDirection(const LibUtilities::PointsKeyVector &keyTgt, const SpatialDomains::GeomMMF MMFdir, const Array< OneD, const NekDouble > &CircCentre, Array< OneD, Array< OneD, NekDouble > > &output)
bool m_valid
Validity of element (Jacobian positive)
StdRegions::StdExpansionSharedPtr m_xmap
Stores information about the expansion.
GeomFactors(const GeomType gtype, const int coordim, const StdRegions::StdExpansionSharedPtr &xmap, const Array< OneD, Array< OneD, NekDouble > > &coords)
Constructor for GeomFactors class.
~GeomFactors()
Destructor.
DerivStorage GetDeriv(const LibUtilities::PointsKeyVector &keyTgt)
Return the derivative of the mapping with respect to the reference coordinates, .
GeomType m_type
Type of geometry (e.g. eRegular, eDeformed, eMovingRegular).
Array< OneD, Array< OneD, NekDouble > > m_coords
Stores coordinates of the geometry.
void ComputeMovingFrames(const LibUtilities::PointsKeyVector &keyTgt, const SpatialDomains::GeomMMF MMFdir, const Array< OneD, const NekDouble > &CircCentre, Array< OneD, Array< OneD, NekDouble > > &movingframes)
void VectorNormalise(Array< OneD, Array< OneD, NekDouble > > &array)
void VectorCrossProd(const Array< OneD, const Array< OneD, NekDouble > > &v1, const Array< OneD, const Array< OneD, NekDouble > > &v2, Array< OneD, Array< OneD, NekDouble > > &v3)
Computes the vector cross-product in 3D of v1 and v2, storing the result in v3.
void Interp1D(const BasisKey &fbasis0, const Array< OneD, const NekDouble > &from, const BasisKey &tbasis0, Array< OneD, NekDouble > &to)
this function interpolates a 1D function evaluated at the quadrature points of the basis fbasis0 to ...
void Interp3D(const BasisKey &fbasis0, const BasisKey &fbasis1, const BasisKey &fbasis2, const Array< OneD, const NekDouble > &from, const BasisKey &tbasis0, const BasisKey &tbasis1, const BasisKey &tbasis2, Array< OneD, NekDouble > &to)
this function interpolates a 3D function evaluated at the quadrature points of the 3D basis,...
void Interp2D(const BasisKey &fbasis0, const BasisKey &fbasis1, const Array< OneD, const NekDouble > &from, const BasisKey &tbasis0, const BasisKey &tbasis1, Array< OneD, NekDouble > &to)
this function interpolates a 2D function evaluated at the quadrature points of the 2D basis,...
std::vector< PointsKey > PointsKeyVector
GeomMMF
Principle direction for MMF.
@ eLOCAL
No Principal direction.
@ eTangentIrregular
Circular around the centre of domain.
@ eTangentX
X coordinate direction.
@ eTangentCircular
Circular around the centre of domain.
@ eTangentNonconvex
Circular around the centre of domain.
@ eTangentXY
XY direction.
@ eTangentZ
Z coordinate direction.
@ eTangentY
Y coordinate direction.
bool operator==(const GeomFactors &lhs, const GeomFactors &rhs)
Equivalence test for GeomFactors objects.
GeomType
Indicates the type of element geometry.
@ eRegular
Geometry is straight-sided with constant geometric factors.
@ eMovingRegular
Currently unused.
@ eDeformed
Geometry is curved or has non-constant factors.
Array< OneD, Array< OneD, Array< OneD, NekDouble > > > DerivStorage
Storage type for derivative of mapping.
std::shared_ptr< StdExpansion > StdExpansionSharedPtr
std::vector< double > d(NPUPPER *NPUPPER)
StdRegions::ConstFactorMap factors
void Vsqrt(int n, const T *x, const int incx, T *y, const int incy)
sqrt y = sqrt(x)
void Vmul(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Multiply vector z = x*y.
void Neg(int n, T *x, const int incx)
Negate x = -x.
T Vmin(int n, const T *x, const int incx)
Return the minimum element in x - called vmin to avoid conflict with min.
void Vvtvp(int n, const T *w, const int incw, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
vvtvp (vector times vector plus vector): z = w*x + y
void Vvtvm(int n, const T *w, const int incw, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
vvtvm (vector times vector minus vector): z = w*x - y
void Vvtvvtm(int n, const T *v, int incv, const T *w, int incw, const T *x, int incx, const T *y, int incy, T *z, int incz)
vvtvvtm (vector times vector minus vector times vector):
void Smul(int n, const T alpha, const T *x, const int incx, T *y, const int incy)
Scalar multiply y = alpha*x.
void Vdiv(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Multiply vector z = x/y.
void Fill(int n, const T alpha, T *x, const int incx)
Fill a vector with a constant value.
void Vcopy(int n, const T *x, const int incx, T *y, const int incy)
scalarT< T > sqrt(scalarT< T > in)