89 : m_type(gtype), m_expDim(xmap->GetShapeDimension()), m_coordDim(coordim),
90 m_valid(true), m_xmap(xmap), m_coords(coords)
100 : m_type(S.m_type), m_expDim(S.m_expDim), m_coordDim(S.m_coordDim),
101 m_valid(S.m_valid), m_xmap(S.m_xmap), m_coords(S.m_coords)
130 if (!(jac_lhs == jac_rhs))
150 "Dimension of target point distribution does not match "
151 "expansion dimension.");
155 int nqtot_tbasis = 1;
163 map_points[i] =
m_xmap->GetBasis(i)->GetPointsKey();
164 nqtot_map *= map_points[i].GetNumPoints();
165 nqtot_tbasis *= keyTgt[i].GetNumPoints();
183 m_xmap->StdPhysDeriv(j, tmp, d_map[j][i]);
196 same = same && (map_points[j] == keyTgt[j]);
202 deriv[j][i] = d_map[j][i];
209 Interp(map_points, d_map[j][i], keyTgt, deriv[j][i]);
232 "Dimension of target point distribution does not match "
233 "expansion dimension.");
235 int i = 0, j = 0, k = 0, l = 0;
243 ptsTgt *= keyTgt[i].GetNumPoints();
255 for (i = 0, l = 0; i <
m_expDim; ++i)
261 Vmath::Vvtvp(ptsTgt, &deriv[i][k][0], 1, &deriv[j][k][0], 1,
262 &tmp[l][0], 1, &tmp[l][0], 1);
309 "Dimension of target point distribution does not match "
310 "expansion dimension.");
312 int i = 0, j = 0, k = 0, l = 0;
320 ptsTgt *= keyTgt[i].GetNumPoints();
332 for (i = 0, l = 0; i <
m_expDim; ++i)
338 Vmath::Vvtvp(ptsTgt, &deriv[i][k][0], 1, &deriv[j][k][0], 1,
339 &tmp[l][0], 1, &tmp[l][0], 1);
356 Vmath::Vdiv(ptsTgt, &gmat[i][0], 1, &jac[0], 1, &gmat[i][0], 1);
373 "Dimension of target point distribution does not match "
374 "expansion dimension.");
376 int i = 0, j = 0, k = 0, l = 0;
384 ptsTgt *= keyTgt[i].GetNumPoints();
397 for (i = 0, l = 0; i <
m_expDim; ++i)
403 Vmath::Vvtvp(ptsTgt, &deriv[i][k][0], 1, &deriv[j][k][0], 1,
404 &tmp[l][0], 1, &tmp[l][0], 1);
421 Vmath::Vdiv(ptsTgt, &gmat[i][0], 1, &jac[0], 1, &gmat[i][0], 1);
451 "Dimension of target point distribution does not match "
452 "expansion dimension.");
460 nq *= keyTgt[i].GetNumPoints();
468 ptsTgt *= keyTgt[i].GetNumPoints();
481 for (i = 0; i < MFdim; ++i)
491 for (i = 0; i < MFdim - 1; ++i)
497 Vmath::Vcopy(ptsTgt, &deriv[i][k][0], 1, &MFtmp[i][k][0], 1);
534 Vmath::Vvtvp(nq, MFtmp[2][i], 1, PrincipleDir[i], 1, temp, 1, temp,
542 Vmath::Vvtvp(nq, temp, 1, MFtmp[2][i], 1, PrincipleDir[i], 1,
556 for (i = 0; i < MFdim; ++i)
584 p[i] =
m_xmap->GetBasis(i)->GetPointsKey();
585 nqtot *=
p[i].GetNumPoints();
597 &deriv[1][0][0], 1, &deriv[0][1][0], 1, &jac[0], 1);
605 &deriv[2][1][0], 1, &deriv[1][2][0], 1, &tmp[0], 1);
606 Vmath::Vvtvp(pts, &deriv[0][0][0], 1, &tmp[0], 1, &jac[0], 1,
610 &deriv[0][1][0], 1, &deriv[2][2][0], 1, &tmp[0], 1);
611 Vmath::Vvtvp(pts, &deriv[1][0][0], 1, &tmp[0], 1, &jac[0], 1,
615 &deriv[1][1][0], 1, &deriv[0][2][0], 1, &tmp[0], 1);
616 Vmath::Vvtvp(pts, &deriv[2][0][0], 1, &tmp[0], 1, &jac[0], 1,
640 ASSERTL1(src_points.size() == tgt_points.size(),
641 "Dimension of target point distribution does not match "
642 "expansion dimension.");
651 tgt_points[0], tgt_points[1], tgt);
655 src, tgt_points[0], tgt_points[1],
672 "Source matrix is of different size to destination"
673 "matrix for computing adjoint.");
675 int n = src[0].size();
683 Vmath::Smul(n, -1.0, &src[1][0], 1, &tgt[1][0], 1);
684 Vmath::Smul(n, -1.0, &src[2][0], 1, &tgt[2][0], 1);
689 int a, b, c,
d, e, i, j;
702 1, &src[c][0], 1, &tgt[e][0], 1);
719 int nq = output[0].size();
770 map_points[i] =
m_xmap->GetBasis(i)->GetPointsKey();
771 nqtot_map *= map_points[i].GetNumPoints();
777 Interp(map_points, tmp, keyTgt, x[k]);
781 NekDouble radius, xc = 0.0, yc = 0.0, xdis, ydis;
791 for (
int i = 0; i < nq; i++)
795 radius =
sqrt(xdis * xdis / la / la + ydis * ydis / lb / lb);
796 output[0][i] = ydis / radius;
797 output[1][i] = -1.0 * xdis / radius;
814 map_points[i] =
m_xmap->GetBasis(i)->GetPointsKey();
815 nqtot_map *= map_points[i].GetNumPoints();
821 Interp(map_points, tmp, keyTgt, x[k]);
826 for (
int i = 0; i < nq; i++)
828 xtan = -1.0 * (x[1][i] * x[1][i] * x[1][i] + x[1][i]);
829 ytan = 2.0 * x[0][i];
830 mag =
sqrt(xtan * xtan + ytan * ytan);
831 output[0][i] = xtan / mag;
832 output[1][i] = ytan / mag;
849 map_points[i] =
m_xmap->GetBasis(i)->GetPointsKey();
850 nqtot_map *= map_points[i].GetNumPoints();
856 Interp(map_points, tmp, keyTgt, x[k]);
861 for (
int i = 0; i < nq; i++)
863 xtan = -2.0 * x[1][i] * x[1][i] * x[1][i] + x[1][i];
864 ytan =
sqrt(3.0) * x[0][i];
865 mag =
sqrt(xtan * xtan + ytan * ytan);
866 output[0][i] = xtan / mag;
867 output[1][i] = ytan / mag;
883 int ndim = array.size();
884 ASSERTL0(ndim > 0,
"Number of components must be > 0.");
885 for (
int i = 1; i < ndim; ++i)
887 ASSERTL0(array[i].size() == array[0].size(),
888 "Array size mismatch in coordinates.");
891 int nq = array[0].size();
895 for (
int i = 0; i < ndim; ++i)
897 Vmath::Vvtvp(nq, array[i], 1, array[i], 1, norm, 1, norm, 1);
903 for (
int i = 0; i < ndim; ++i)
905 Vmath::Vdiv(nq, array[i], 1, norm, 1, array[i], 1);
923 ASSERTL0(v1.size() == 3,
"Input 1 has dimension not equal to 3.");
924 ASSERTL0(v2.size() == 3,
"Input 2 has dimension not equal to 3.");
925 ASSERTL0(v3.size() == 3,
"Output vector has dimension not equal to 3.");
927 int nq = v1[0].size();
931 Vmath::Vvtvm(nq, v1[1], 1, v2[2], 1, temp, 1, v3[0], 1);
934 Vmath::Vvtvm(nq, v1[2], 1, v2[0], 1, temp, 1, v3[1], 1);
937 Vmath::Vvtvm(nq, v1[0], 1, v2[1], 1, temp, 1, v3[2], 1);
#define ASSERTL0(condition, msg)
#define ASSERTL1(condition, msg)
Assert Level 1 – Debugging which is used whether in FULLDEBUG or DEBUG compilation mode....
Calculation and storage of geometric factors associated with the mapping from StdRegions reference el...
DerivStorage ComputeDeriv(const LibUtilities::PointsKeyVector &keyTgt) const
Array< TwoD, NekDouble > ComputeDerivFactors(const LibUtilities::PointsKeyVector &keyTgt) const
Return the derivative of the reference coordinates with respect to the mapping, .
void Adjoint(const Array< TwoD, const NekDouble > &src, Array< TwoD, NekDouble > &tgt) const
Compute the transpose of the cofactors matrix.
int m_coordDim
Dimension of coordinate system.
void CheckIfValid()
Tests if the element is valid and not self-intersecting.
void Interp(const LibUtilities::PointsKeyVector &src_points, const Array< OneD, const NekDouble > &src, const LibUtilities::PointsKeyVector &tgt_points, Array< OneD, NekDouble > &tgt) const
Perform interpolation of data between two point distributions.
Array< OneD, NekDouble > ComputeJac(const LibUtilities::PointsKeyVector &keyTgt) const
Return the Jacobian of the mapping and cache the result.
int m_expDim
Dimension of expansion.
Array< TwoD, NekDouble > ComputeGmat(const LibUtilities::PointsKeyVector &keyTgt) const
Computes the Laplacian coefficients .
void ComputePrincipleDirection(const LibUtilities::PointsKeyVector &keyTgt, const SpatialDomains::GeomMMF MMFdir, const Array< OneD, const NekDouble > &CircCentre, Array< OneD, Array< OneD, NekDouble > > &output)
bool m_valid
Validity of element (Jacobian positive)
StdRegions::StdExpansionSharedPtr m_xmap
Stores information about the expansion.
GeomFactors(const GeomType gtype, const int coordim, const StdRegions::StdExpansionSharedPtr &xmap, const Array< OneD, Array< OneD, NekDouble > > &coords)
Constructor for GeomFactors class.
DerivStorage GetDeriv(const LibUtilities::PointsKeyVector &keyTgt)
Return the derivative of the mapping with respect to the reference coordinates, .
GeomType m_type
Type of geometry (e.g. eRegular, eDeformed, eMovingRegular).
Array< OneD, Array< OneD, NekDouble > > m_coords
Stores coordinates of the geometry.
void ComputeMovingFrames(const LibUtilities::PointsKeyVector &keyTgt, const SpatialDomains::GeomMMF MMFdir, const Array< OneD, const NekDouble > &CircCentre, Array< OneD, Array< OneD, NekDouble > > &movingframes)
void VectorNormalise(Array< OneD, Array< OneD, NekDouble > > &array)
void VectorCrossProd(const Array< OneD, const Array< OneD, NekDouble > > &v1, const Array< OneD, const Array< OneD, NekDouble > > &v2, Array< OneD, Array< OneD, NekDouble > > &v3)
Computes the vector cross-product in 3D of v1 and v2, storing the result in v3.
void Interp1D(const BasisKey &fbasis0, const Array< OneD, const NekDouble > &from, const BasisKey &tbasis0, Array< OneD, NekDouble > &to)
this function interpolates a 1D function evaluated at the quadrature points of the basis fbasis0 to ...
void Interp3D(const BasisKey &fbasis0, const BasisKey &fbasis1, const BasisKey &fbasis2, const Array< OneD, const NekDouble > &from, const BasisKey &tbasis0, const BasisKey &tbasis1, const BasisKey &tbasis2, Array< OneD, NekDouble > &to)
this function interpolates a 3D function evaluated at the quadrature points of the 3D basis,...
void Interp2D(const BasisKey &fbasis0, const BasisKey &fbasis1, const Array< OneD, const NekDouble > &from, const BasisKey &tbasis0, const BasisKey &tbasis1, Array< OneD, NekDouble > &to)
this function interpolates a 2D function evaluated at the quadrature points of the 2D basis,...
std::vector< PointsKey > PointsKeyVector
GeomMMF
Principle direction for MMF.
@ eLOCAL
No Principal direction.
@ eTangentIrregular
Circular around the centre of domain.
@ eTangentX
X coordinate direction.
@ eTangentCircular
Circular around the centre of domain.
@ eTangentNonconvex
Circular around the centre of domain.
@ eTangentXY
XY direction.
@ eTangentZ
Z coordinate direction.
@ eTangentY
Y coordinate direction.
bool operator==(const GeomFactors &lhs, const GeomFactors &rhs)
Equivalence test for GeomFactors objects.
GeomType
Indicates the type of element geometry.
@ eRegular
Geometry is straight-sided with constant geometric factors.
@ eMovingRegular
Currently unused.
@ eDeformed
Geometry is curved or has non-constant factors.
Array< OneD, Array< OneD, Array< OneD, NekDouble > > > DerivStorage
Storage type for derivative of mapping.
std::shared_ptr< StdExpansion > StdExpansionSharedPtr
std::vector< double > d(NPUPPER *NPUPPER)
StdRegions::ConstFactorMap factors
void Vsqrt(int n, const T *x, const int incx, T *y, const int incy)
sqrt y = sqrt(x)
void Vmul(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Multiply vector z = x*y.
void Neg(int n, T *x, const int incx)
Negate x = -x.
T Vmin(int n, const T *x, const int incx)
Return the minimum element in x - called vmin to avoid conflict with min.
void Vvtvp(int n, const T *w, const int incw, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
vvtvp (vector times vector plus vector): z = w*x + y
void Vvtvm(int n, const T *w, const int incw, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
vvtvm (vector times vector minus vector): z = w*x - y
void Vvtvvtm(int n, const T *v, int incv, const T *w, int incw, const T *x, int incx, const T *y, int incy, T *z, int incz)
vvtvvtm (vector times vector minus vector times vector):
void Smul(int n, const T alpha, const T *x, const int incx, T *y, const int incy)
Scalar multiply y = alpha*x.
void Vdiv(int n, const T *x, const int incx, const T *y, const int incy, T *z, const int incz)
Multiply vector z = x/y.
void Fill(int n, const T alpha, T *x, const int incx)
Fill a vector with a constant value.
void Vcopy(int n, const T *x, const int incx, T *y, const int incy)
scalarT< T > sqrt(scalarT< T > in)